Data filtering‐based parameter estimation algorithms for a class of nonlinear systems with colored noises

Chen Zhang, Yang Liu, Li Li, Fazhi Song
{"title":"Data filtering‐based parameter estimation algorithms for a class of nonlinear systems with colored noises","authors":"Chen Zhang, Yang Liu, Li Li, Fazhi Song","doi":"10.1002/oca.2985","DOIUrl":null,"url":null,"abstract":"This article studies the data filtering‐based identification algorithms for a class of nonlinear system with autoregressive noise. By means of the data filtering technique and the hierarchical identification principle, the identification model is transformed into two sub‐identification models, and a filtering hierarchical gradient‐based iterative algorithm is proposed for improving parameter estimation accuracy and reducing computational burden. Meanwhile, to further improve the identification performance, the multi‐innovation identification theory is used to derived the filtering hierarchical multi‐innovation gradient‐based iterative algorithm. The gradient‐based iterative algorithm is given for comparison. The analysis shows that the filtering hierarchical gradient‐based iterative algorithm has smaller computational burden and can give more accurate parameter estimates than the gradient‐based iterative algorithm, and the filtering hierarchical multi‐innovation gradient‐based iterative algorithm can track time‐varying parameters based on the dynamical window data. Finally, the example part is provided to verify the effectiveness of the proposed algorithms.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.2985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article studies the data filtering‐based identification algorithms for a class of nonlinear system with autoregressive noise. By means of the data filtering technique and the hierarchical identification principle, the identification model is transformed into two sub‐identification models, and a filtering hierarchical gradient‐based iterative algorithm is proposed for improving parameter estimation accuracy and reducing computational burden. Meanwhile, to further improve the identification performance, the multi‐innovation identification theory is used to derived the filtering hierarchical multi‐innovation gradient‐based iterative algorithm. The gradient‐based iterative algorithm is given for comparison. The analysis shows that the filtering hierarchical gradient‐based iterative algorithm has smaller computational burden and can give more accurate parameter estimates than the gradient‐based iterative algorithm, and the filtering hierarchical multi‐innovation gradient‐based iterative algorithm can track time‐varying parameters based on the dynamical window data. Finally, the example part is provided to verify the effectiveness of the proposed algorithms.
一类有色噪声非线性系统的基于数据滤波的参数估计算法
研究了一类具有自回归噪声的非线性系统的基于数据滤波的辨识算法。利用数据滤波技术和分层识别原理,将识别模型转化为两个子识别模型,提出了一种基于分层梯度滤波的迭代算法,提高了参数估计精度,减少了计算量。同时,为了进一步提高识别性能,利用多创新识别理论,推导出基于梯度的滤波分层多创新迭代算法。给出了基于梯度的迭代算法进行比较。分析表明,与基于梯度的迭代算法相比,基于分层梯度的滤波迭代算法计算量更小,参数估计更准确;基于分层多创新梯度的滤波迭代算法能够基于动态窗口数据跟踪时变参数。最后通过算例验证了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信