{"title":"Towards Detection and Remediation of Phonemic Confusion","authors":"F. Roewer-Després, A. Yeung, Ilan Kogan","doi":"10.18653/v1/2021.sigmorphon-1.1","DOIUrl":null,"url":null,"abstract":"Reducing communication breakdown is critical to success in interactive NLP applications, such as dialogue systems. To this end, we propose a confusion-mitigation framework for the detection and remediation of communication breakdown. In this work, as a first step towards implementing this framework, we focus on detecting phonemic sources of confusion. As a proof-of-concept, we evaluate two neural architectures in predicting the probability that a listener will misunderstand phonemes in an utterance. We show that both neural models outperform a weighted n-gram baseline, showing early promise for the broader framework.","PeriodicalId":187165,"journal":{"name":"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.sigmorphon-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing communication breakdown is critical to success in interactive NLP applications, such as dialogue systems. To this end, we propose a confusion-mitigation framework for the detection and remediation of communication breakdown. In this work, as a first step towards implementing this framework, we focus on detecting phonemic sources of confusion. As a proof-of-concept, we evaluate two neural architectures in predicting the probability that a listener will misunderstand phonemes in an utterance. We show that both neural models outperform a weighted n-gram baseline, showing early promise for the broader framework.