{"title":"An FPGA-based Implementation Method for Quadratic Spiking Neuron Model","authors":"Xianghong Lin, Hang Lu, Xiaomei Pi, Xiangwen Wang","doi":"10.1109/UEMCON51285.2020.9298029","DOIUrl":null,"url":null,"abstract":"In the innovative neural prostheses, the biological cell assemblies of the biological nervous system can be replaced by artificial organs, which makes the idea of dynamically interface biological neurons even more urgent. To mimic and investigate the activity of biological neural networks, many different architectures and technologies in the field of neuromorphic have been developed at present. When structuring simple neuron models, researchers use Field programmable gate arrays (FPGAs) to obtain better accuracy and real-time performance. This paper uses FPGAs to achieve the circuit design of the neuron model, such that based on the biologically plausible the quadratic spiking neuron model, can simulate the neuron spiking behaviors of thalamus neurons and hippocampal CA1 pyramidal neurons. After the FPGA hardware architecture of the neuron model is designed and implemented, this model can better simulate the spiking behaviors observed in biological neurons.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the innovative neural prostheses, the biological cell assemblies of the biological nervous system can be replaced by artificial organs, which makes the idea of dynamically interface biological neurons even more urgent. To mimic and investigate the activity of biological neural networks, many different architectures and technologies in the field of neuromorphic have been developed at present. When structuring simple neuron models, researchers use Field programmable gate arrays (FPGAs) to obtain better accuracy and real-time performance. This paper uses FPGAs to achieve the circuit design of the neuron model, such that based on the biologically plausible the quadratic spiking neuron model, can simulate the neuron spiking behaviors of thalamus neurons and hippocampal CA1 pyramidal neurons. After the FPGA hardware architecture of the neuron model is designed and implemented, this model can better simulate the spiking behaviors observed in biological neurons.