Mining Time Series Data with Apriori Tid Algorithm

H. Sarma, Swapnil Mishra
{"title":"Mining Time Series Data with Apriori Tid Algorithm","authors":"H. Sarma, Swapnil Mishra","doi":"10.1109/ICIT.2016.043","DOIUrl":null,"url":null,"abstract":"Analysis of time series data is important. Association rule mining algorithms like Apriori Tid can be implemented over time series to find out the frequent item sets. In this paper, a modified version of Apriori Tid is proposed. Both the association rule mining algorithms Apriori Tid and modified Apriori Tid are implemented over time series data. Rainfall data related to North Eastern India has been considered as the time series. The performances of both the algorithms in terms of computation time requirements for generating frequent item sets are analysed. Future scope of the work is also outlined.","PeriodicalId":220153,"journal":{"name":"2016 International Conference on Information Technology (ICIT)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Information Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2016.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Analysis of time series data is important. Association rule mining algorithms like Apriori Tid can be implemented over time series to find out the frequent item sets. In this paper, a modified version of Apriori Tid is proposed. Both the association rule mining algorithms Apriori Tid and modified Apriori Tid are implemented over time series data. Rainfall data related to North Eastern India has been considered as the time series. The performances of both the algorithms in terms of computation time requirements for generating frequent item sets are analysed. Future scope of the work is also outlined.
利用Apriori Tid算法挖掘时间序列数据
时间序列数据的分析很重要。像Apriori Tid这样的关联规则挖掘算法可以在时间序列上实现,以找出频繁的项目集。本文提出了Apriori Tid的改进版本。关联规则挖掘算法Apriori Tid和改进的Apriori Tid都是针对时间序列数据实现的。与印度东北部有关的降雨数据被视为时间序列。分析了两种算法在生成频繁项集的计算时间方面的性能。还概述了今后的工作范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信