A Fully Three-Dimensional Simulation of a Ground-Penetrating Radar over Lossy and Dispersive Grounds

D. Uduwawala, A. Gunawardena
{"title":"A Fully Three-Dimensional Simulation of a Ground-Penetrating Radar over Lossy and Dispersive Grounds","authors":"D. Uduwawala, A. Gunawardena","doi":"10.1109/ICIINFS.2006.347138","DOIUrl":null,"url":null,"abstract":"A 3-D finite difference time domain (FDTD) simulation is done on a ground penetrating radar (GPR) operating above lossy and dispersive grounds. The radar consists of a pair of resistor-loaded bow-tie antennas and the ground consists of Puerto Rico clay loam. The clay loam is modeled by using a two term Debye model with a static conductivity. The simulation results show the GPR response of buried metal and plastic pipes. The results are more realistic as the simulations include commercially used antennas and real ground conditions. The target signatures and target polarization characteristics of the pipes are also studied in the paper","PeriodicalId":122994,"journal":{"name":"First International Conference on Industrial and Information Systems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2006.347138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A 3-D finite difference time domain (FDTD) simulation is done on a ground penetrating radar (GPR) operating above lossy and dispersive grounds. The radar consists of a pair of resistor-loaded bow-tie antennas and the ground consists of Puerto Rico clay loam. The clay loam is modeled by using a two term Debye model with a static conductivity. The simulation results show the GPR response of buried metal and plastic pipes. The results are more realistic as the simulations include commercially used antennas and real ground conditions. The target signatures and target polarization characteristics of the pipes are also studied in the paper
探地雷达在有损和色散地面上的全三维模拟
对工作在有损和色散地面上的探地雷达进行了三维时域有限差分仿真。雷达由一对负载电阻的领结天线组成,地面由波多黎各粘土壤土组成。采用具有静态电导率的两项德拜模型对粘土壤土进行了建模。仿真结果显示了埋地金属和塑料管的探地雷达响应。由于模拟包括了商用天线和真实地面条件,结果更加真实。本文还对管道的目标特征和目标极化特性进行了研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信