M. Ulum, Adi Kurniawan Saputro, Koko Joni, Riza Alfita, Rosida Vivin Nahari, Siti A’isya, Achmad Ubaidillah
{"title":"Planning and Manufacturing of Four Axis Solar Panels With Reflector Angle Adjustments","authors":"M. Ulum, Adi Kurniawan Saputro, Koko Joni, Riza Alfita, Rosida Vivin Nahari, Siti A’isya, Achmad Ubaidillah","doi":"10.21070/jeeeu.v6i1.1628","DOIUrl":null,"url":null,"abstract":"Solar thermal energy is one type of renewable energy, so this type of energy can be converted into other energy. This study uses a four-axis solar tracker with angle settings on the reflector to get optimal sunlight, scanning to determine the optimal lighting angle, measurement results are stored in real-time in the data logger. This study uses an LDR (Light Dependent Resistor) as a sunlight detector, equipped with several sensors, namely: current, voltage and power sensor (INA219), light sensor (MAX4409), and temperature sensor (DS18B20), and reflector angle as a parameter of solar efficiency panels. . The results showed that a four-axis solar tracker equipped with a reflector was able to increase the output power. The maximum power production produced by solar panels is: At a reflector angle of 300, the maximum power generated by a static panel is 143.43 W while a solar tracker is 175.15 W. At a reflector angle of 450 the maximum power generated by a static panel is 170.01 W and solar tracker 236.36 W. At an angled reflector of 600 the full power generated by a static panel is 87.77 W, and a solar tracker is 123.36 W. This study concludes that a solar tracker panel with an angle setting of 300 is more capable of maximizing power output than a static solar panel. \n \nKeyword : Solar Tracker, Four Axist, Reflektor","PeriodicalId":320287,"journal":{"name":"JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21070/jeeeu.v6i1.1628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Solar thermal energy is one type of renewable energy, so this type of energy can be converted into other energy. This study uses a four-axis solar tracker with angle settings on the reflector to get optimal sunlight, scanning to determine the optimal lighting angle, measurement results are stored in real-time in the data logger. This study uses an LDR (Light Dependent Resistor) as a sunlight detector, equipped with several sensors, namely: current, voltage and power sensor (INA219), light sensor (MAX4409), and temperature sensor (DS18B20), and reflector angle as a parameter of solar efficiency panels. . The results showed that a four-axis solar tracker equipped with a reflector was able to increase the output power. The maximum power production produced by solar panels is: At a reflector angle of 300, the maximum power generated by a static panel is 143.43 W while a solar tracker is 175.15 W. At a reflector angle of 450 the maximum power generated by a static panel is 170.01 W and solar tracker 236.36 W. At an angled reflector of 600 the full power generated by a static panel is 87.77 W, and a solar tracker is 123.36 W. This study concludes that a solar tracker panel with an angle setting of 300 is more capable of maximizing power output than a static solar panel.
Keyword : Solar Tracker, Four Axist, Reflektor