Multi-Start Jaya Algorithm for Software Module Clustering Problem

K. Z. Zamli, Abdulrahman A. Alsewari, Bestoun S. Ahmed
{"title":"Multi-Start Jaya Algorithm for Software Module Clustering Problem","authors":"K. Z. Zamli, Abdulrahman A. Alsewari, Bestoun S. Ahmed","doi":"10.32010/26166127.2018.1.1.87.112","DOIUrl":null,"url":null,"abstract":"1 IBM Centre of Excellence, Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Pahang, Malaysia, kamalz@ump.edu.my 2 Faculty of Computer Systems and Software Engineering,Universiti Malaysia Pahang, Pahang, Malaysia, alsewari@ump.edu.my 3 Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic, albeybes@fel.cvut.cz *Correspondence: Kamal Z. Zamli, IBM Centre of Excellence, Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Pahang, Malaysia, kamalz@ump. edu.my Abstract Jaya algorithm has gained considerable attention lately due to its simplicity and requiring no control parameters (i.e. parameter free). Despite its potential, Jaya algorithm is inherently designed for single objective problems. Additionally, Jaya is limited by the intense conflict between exploration (i.e. roams the random search space at the global scale) and exploitation (i.e. neighborhood search by exploiting the current good solution). Thus, Jaya requires better control for exploitation and exploration in order to prevent premature convergence and avoid being trapped in local optima. Addressing these issues, this paper proposes a new multi-objective Jaya variant with a multi-start adaptive capability and Cuckoo search like elitism scheme, called MS-Jaya, to enhance its exploitation and exploration allowing good convergence while permitting more diverse solutions. To assess its performances, we adopt MSJaya for the software module clustering problem. Experimental results reveal that MS-Jaya exhibits competitive performances against the original Jaya and state-of-the-art parameter free meta-heuristic counterparts consisting of Teaching Learning based Optimization (TLBO), Global Neighborhood Algorithm (GNA), Symbiotic Optimization Search (SOS), and Sine Cosine Algorithm (SCA).","PeriodicalId":275688,"journal":{"name":"Azerbaijan Journal of High Performance Computing","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Azerbaijan Journal of High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32010/26166127.2018.1.1.87.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

1 IBM Centre of Excellence, Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Pahang, Malaysia, kamalz@ump.edu.my 2 Faculty of Computer Systems and Software Engineering,Universiti Malaysia Pahang, Pahang, Malaysia, alsewari@ump.edu.my 3 Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic, albeybes@fel.cvut.cz *Correspondence: Kamal Z. Zamli, IBM Centre of Excellence, Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Pahang, Malaysia, kamalz@ump. edu.my Abstract Jaya algorithm has gained considerable attention lately due to its simplicity and requiring no control parameters (i.e. parameter free). Despite its potential, Jaya algorithm is inherently designed for single objective problems. Additionally, Jaya is limited by the intense conflict between exploration (i.e. roams the random search space at the global scale) and exploitation (i.e. neighborhood search by exploiting the current good solution). Thus, Jaya requires better control for exploitation and exploration in order to prevent premature convergence and avoid being trapped in local optima. Addressing these issues, this paper proposes a new multi-objective Jaya variant with a multi-start adaptive capability and Cuckoo search like elitism scheme, called MS-Jaya, to enhance its exploitation and exploration allowing good convergence while permitting more diverse solutions. To assess its performances, we adopt MSJaya for the software module clustering problem. Experimental results reveal that MS-Jaya exhibits competitive performances against the original Jaya and state-of-the-art parameter free meta-heuristic counterparts consisting of Teaching Learning based Optimization (TLBO), Global Neighborhood Algorithm (GNA), Symbiotic Optimization Search (SOS), and Sine Cosine Algorithm (SCA).
软件模块聚类问题的多启动Jaya算法
1马来西亚彭亨大学计算机系统与软件工程学院IBM卓越中心,马来西亚彭亨,kamalz@ump.edu.my 2马来西亚彭亨大学计算机系统与软件工程学院,马来西亚彭亨,alsewari@ump.edu.my 3捷克工业大学计算机科学系,捷克布拉格,albeybes@fel.cvut.cz *通讯:Kamal Z. Zamli,马来西亚彭亨大学计算机系统与软件工程学院IBM卓越中心,马来西亚彭亨,kamalz@ump。edu。Jaya算法最近由于其简单性和不需要控制参数(即无参数)而获得了相当大的关注。尽管具有潜力,但Jaya算法本质上是为单一目标问题设计的。此外,Jaya受到探索(即在全球范围内漫游随机搜索空间)和利用(即通过利用当前好的解决方案进行邻域搜索)之间的激烈冲突的限制。因此,Jaya需要对开采和勘探进行更好的控制,以防止过早收敛,避免陷入局部最优。针对这些问题,本文提出了一种新的多目标Jaya变体,具有多起点自适应能力和布谷鸟搜索式精英方案,称为MS-Jaya,以增强其开发和探索能力,在允许更多样化的解决方案的同时具有良好的收敛性。为了评估其性能,我们采用MSJaya来解决软件模块聚类问题。实验结果表明,MS-Jaya与原始的Jaya和最先进的无参数元启发式算法(包括基于教学的优化(TLBO)、全局邻域算法(GNA)、共生优化搜索(SOS)和正弦余弦算法(SCA))相比,具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信