{"title":"Logic gates based on nonlinear oscillators","authors":"M. Bonnin, F. Bonani, F. Traversa","doi":"10.1109/COMPENG50184.2022.9905446","DOIUrl":null,"url":null,"abstract":"Networks of coupled nonlinear oscillators are among the recently proposed computation structures that can possibly overcome bottlenecks and limitations of current designs. It has been shown that coupled oscillator networks are capable of solving complex combinatorial optimization problems, such as the MAX-CUT problem and the Boolean Satisfiability (SAT) problem. The goal of this work is to provide a theoretical framework for designing logic gates based on coupled nonlinear oscillators. We show how a simplified model for the network can be derived using the phase reduction technique. The phase deviation equations obtained are then used to design simple networks that achieve the desired phase patterns implementing the corresponding logic gates.","PeriodicalId":211056,"journal":{"name":"2022 IEEE Workshop on Complexity in Engineering (COMPENG)","volume":"305 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Workshop on Complexity in Engineering (COMPENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPENG50184.2022.9905446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Networks of coupled nonlinear oscillators are among the recently proposed computation structures that can possibly overcome bottlenecks and limitations of current designs. It has been shown that coupled oscillator networks are capable of solving complex combinatorial optimization problems, such as the MAX-CUT problem and the Boolean Satisfiability (SAT) problem. The goal of this work is to provide a theoretical framework for designing logic gates based on coupled nonlinear oscillators. We show how a simplified model for the network can be derived using the phase reduction technique. The phase deviation equations obtained are then used to design simple networks that achieve the desired phase patterns implementing the corresponding logic gates.