{"title":"Sensor noise modeling using the Skellam distribution: Application to the color edge detection","authors":"Youngbae Hwang, Jun-Sik Kim, In-So Kweon","doi":"10.1109/CVPR.2007.383004","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the Skellam distribution as a sensor noise model for CCD or CMOS cameras. This is derived from the Poisson distribution of photons that determine the sensor response. We show that the Skellam distribution can be used to measure the intensity difference of pixels in the spatial domain, as well as in the temporal domain. In addition, we show that Skellam parameters are linearly related to the intensity of the pixels. This property means that the brighter pixels tolerate greater variation of intensity than the darker pixels. This enables us to decide automatically whether two pixels have different colors. We apply this modeling to detect the edges in color images. The resulting algorithm requires only a confidence interval for a hypothesis test, because it uses the distribution of image noise directly. More importantly, we demonstrate that without conventional Gaussian smoothing the noise model-based approach can automatically extract the fine details of image structures, such as edges and corners, independent of camera setting.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"301 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53
Abstract
In this paper, we introduce the Skellam distribution as a sensor noise model for CCD or CMOS cameras. This is derived from the Poisson distribution of photons that determine the sensor response. We show that the Skellam distribution can be used to measure the intensity difference of pixels in the spatial domain, as well as in the temporal domain. In addition, we show that Skellam parameters are linearly related to the intensity of the pixels. This property means that the brighter pixels tolerate greater variation of intensity than the darker pixels. This enables us to decide automatically whether two pixels have different colors. We apply this modeling to detect the edges in color images. The resulting algorithm requires only a confidence interval for a hypothesis test, because it uses the distribution of image noise directly. More importantly, we demonstrate that without conventional Gaussian smoothing the noise model-based approach can automatically extract the fine details of image structures, such as edges and corners, independent of camera setting.