Exploiting Learning and Scenario-Based Specification Languages for the Verification and Validation of Highly Automated Driving

W. Damm, R. Galbas
{"title":"Exploiting Learning and Scenario-Based Specification Languages for the Verification and Validation of Highly Automated Driving","authors":"W. Damm, R. Galbas","doi":"10.1145/3194085.3194086","DOIUrl":null,"url":null,"abstract":"We propose a series of methods based on learning key structural properties from traffic data-basis and on statistical model checking, ultimately leading to the construction of a scenario catalogue capturing requirements for controlling criticality for highly autonomous vehicles. We sketch underlying mathematical foundations which allow to derive formal confidence levels that vehicles tested by such a scenario catalogue will maintain the required control of criticality in real traffic matching the probability distributions of key parameters of data recorded in the reference data base employed for this process.","PeriodicalId":360022,"journal":{"name":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","volume":"326 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194085.3194086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We propose a series of methods based on learning key structural properties from traffic data-basis and on statistical model checking, ultimately leading to the construction of a scenario catalogue capturing requirements for controlling criticality for highly autonomous vehicles. We sketch underlying mathematical foundations which allow to derive formal confidence levels that vehicles tested by such a scenario catalogue will maintain the required control of criticality in real traffic matching the probability distributions of key parameters of data recorded in the reference data base employed for this process.
利用学习和基于场景的规范语言进行高度自动驾驶的验证和验证
我们提出了一系列基于从交通数据中学习关键结构属性和统计模型检查的方法,最终构建了一个捕获高度自动驾驶车辆临界控制需求的场景目录。我们概述了潜在的数学基础,这些基础允许推导出正式的置信水平,即通过这种场景目录测试的车辆将在实际交通中保持所需的临界控制,与此过程中使用的参考数据库中记录的数据的关键参数的概率分布相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信