Diagnosing Abnormal Electrocardiogram (ECG) via Deep Learning

Xin Gao
{"title":"Diagnosing Abnormal Electrocardiogram (ECG) via Deep Learning","authors":"Xin Gao","doi":"10.5772/INTECHOPEN.85509","DOIUrl":null,"url":null,"abstract":"In this chapter, we investigate the most recent automatic detecting algorithms on abnormal electrocardiogram (ECG) in a variety of cardiac arrhythmias. We pres-ent typical examples of a medical case study and technical applications related to diagnosing ECG, which include (i) a recently patented data classifier on the basis of deep learning model, (ii) a deep neural network scheme to diagnose variable types of arrhythmia through wearable ECG monitoring devices, and (iii) implementation of the health cloud platform, which consists of automatic detection, data mining, and classifying via the Android terminal module. Our work establishes a cross-area study, which relates artificial intelligence (AI), deep learning, cloud computing on huge amount of data to minishape ECG monitoring devices, and portable interaction platforms. Experimental results display the technical advantages such as saving cost, better reliability, and higher accuracy of deep learning-based models in contrast to conventional schemes on cardiac diagnosis.","PeriodicalId":290165,"journal":{"name":"Practical Applications of Electrocardiogram","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Applications of Electrocardiogram","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this chapter, we investigate the most recent automatic detecting algorithms on abnormal electrocardiogram (ECG) in a variety of cardiac arrhythmias. We pres-ent typical examples of a medical case study and technical applications related to diagnosing ECG, which include (i) a recently patented data classifier on the basis of deep learning model, (ii) a deep neural network scheme to diagnose variable types of arrhythmia through wearable ECG monitoring devices, and (iii) implementation of the health cloud platform, which consists of automatic detection, data mining, and classifying via the Android terminal module. Our work establishes a cross-area study, which relates artificial intelligence (AI), deep learning, cloud computing on huge amount of data to minishape ECG monitoring devices, and portable interaction platforms. Experimental results display the technical advantages such as saving cost, better reliability, and higher accuracy of deep learning-based models in contrast to conventional schemes on cardiac diagnosis.
基于深度学习的异常心电图诊断
在本章中,我们研究了最新的各种心律失常异常心电图(ECG)自动检测算法。我们介绍了与心电诊断相关的医学案例研究和技术应用的典型示例,包括(i)最近获得专利的基于深度学习模型的数据分类器,(ii)通过穿戴式心电监测设备诊断可变类型心律失常的深度神经网络方案,以及(iii)通过Android终端模块实现由自动检测、数据挖掘和分类组成的健康云平台。我们的工作建立了一个跨领域的研究,将人工智能(AI)、深度学习、海量数据的云计算与微型心电监护设备和便携式交互平台联系起来。实验结果表明,与传统的心脏诊断方案相比,基于深度学习的模型具有成本低、可靠性好、准确率高等技术优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信