Improving Spark performance with zero-copy buffer management and RDMA

Hu Li, Tian-Li Chen, W. Xu
{"title":"Improving Spark performance with zero-copy buffer management and RDMA","authors":"Hu Li, Tian-Li Chen, W. Xu","doi":"10.1109/INFCOMW.2016.7562041","DOIUrl":null,"url":null,"abstract":"With the ever increasing demand on interactive data analytics, latency for big data frameworks becomes more important. We present our preliminary experience designing and implementing NetSpark, an improved Spark [1] framework that is highly optimized for network latency. Combining optimizations on data serialization, network buffer management with hardware-supported Remote Direct Memory Access (RDMA) technology, we show that we can eliminate most of the data copies from end to end, significantly reducing the Spark task running time. Our preliminary experiments show that NetSpark improves GroupBy operation in Spark by about 40% and the PageRank algorithm in GraphX by about 20% on a 10Gbps data center network over the legacy network stack.","PeriodicalId":348177,"journal":{"name":"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2016.7562041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the ever increasing demand on interactive data analytics, latency for big data frameworks becomes more important. We present our preliminary experience designing and implementing NetSpark, an improved Spark [1] framework that is highly optimized for network latency. Combining optimizations on data serialization, network buffer management with hardware-supported Remote Direct Memory Access (RDMA) technology, we show that we can eliminate most of the data copies from end to end, significantly reducing the Spark task running time. Our preliminary experiments show that NetSpark improves GroupBy operation in Spark by about 40% and the PageRank algorithm in GraphX by about 20% on a 10Gbps data center network over the legacy network stack.
通过零拷贝缓冲区管理和RDMA改进Spark性能
随着交互式数据分析需求的不断增长,大数据框架的延迟变得越来越重要。我们介绍了我们设计和实现NetSpark的初步经验,NetSpark是一个改进的Spark[1]框架,对网络延迟进行了高度优化。结合对数据序列化、网络缓冲区管理和硬件支持的远程直接内存访问(RDMA)技术的优化,我们表明我们可以消除端到端大部分数据副本,显著减少Spark任务的运行时间。我们的初步实验表明,在一个10Gbps的数据中心网络上,NetSpark将Spark中的GroupBy操作提高了约40%,将GraphX中的PageRank算法提高了约20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信