An approximate computing technique for reducing the complexity of a direct-solver for sparse linear systems in real-time video processing

Michael Schaffner, Frank K. Gürkaynak, A. Smolic, H. Kaeslin, L. Benini
{"title":"An approximate computing technique for reducing the complexity of a direct-solver for sparse linear systems in real-time video processing","authors":"Michael Schaffner, Frank K. Gürkaynak, A. Smolic, H. Kaeslin, L. Benini","doi":"10.1145/2593069.2593082","DOIUrl":null,"url":null,"abstract":"Many video processing algorithms are formulated as least-squares problems that result in large, sparse linear systems. Solving such systems in real time is very demanding. This paper focuses on reducing the computational complexity of a direct Cholesky-decomposition-based solver. Our approximation scheme builds on the observation that, in well-conditioned problems, many elements in the decomposition nearly vanish. Such elements may be pruned from the dependency graph with mild accuracy degradation. Using an example from image-domain warping, we show that pruning reduces the amount of operations per solve by over 75 %, resulting in significant savings in computing time, area or energy.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Many video processing algorithms are formulated as least-squares problems that result in large, sparse linear systems. Solving such systems in real time is very demanding. This paper focuses on reducing the computational complexity of a direct Cholesky-decomposition-based solver. Our approximation scheme builds on the observation that, in well-conditioned problems, many elements in the decomposition nearly vanish. Such elements may be pruned from the dependency graph with mild accuracy degradation. Using an example from image-domain warping, we show that pruning reduces the amount of operations per solve by over 75 %, resulting in significant savings in computing time, area or energy.
一种降低实时视频处理中稀疏线性系统直接求解器复杂度的近似计算技术
许多视频处理算法被表述为导致大型稀疏线性系统的最小二乘问题。实时解决这样的系统是非常困难的。本文的重点是降低直接基于cholesky分解的求解器的计算复杂度。我们的近似方案建立在观察的基础上,在条件良好的问题中,分解中的许多元素几乎消失。这样的元素可能会从依赖关系图中删除,但准确性会有轻微的降低。使用图像域翘曲的示例,我们表明修剪将每次求解的操作量减少了75%以上,从而显着节省了计算时间,面积或能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信