Learning Execution Contexts from System Call Distribution for Anomaly Detection in Smart Embedded System

Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, L. Sha
{"title":"Learning Execution Contexts from System Call Distribution for Anomaly Detection in Smart Embedded System","authors":"Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, L. Sha","doi":"10.1145/3054977.3054999","DOIUrl":null,"url":null,"abstract":"Existing techniques used for anomaly detection do not fully utilize the intrinsic properties of embedded devices. In this paper, we propose a lightweight method for detecting anomalous executions using a distribution of system call frequencies. We use a cluster analysis to learn the legitimate execution contexts of embedded applications and then monitor them at run-time to capture abnormal executions. Our prototype applied to a real-world open-source embedded application shows that the proposed method can effectively detect anomalous executions without relying on sophisticated analyses or affecting the critical execution paths.","PeriodicalId":179120,"journal":{"name":"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3054977.3054999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Existing techniques used for anomaly detection do not fully utilize the intrinsic properties of embedded devices. In this paper, we propose a lightweight method for detecting anomalous executions using a distribution of system call frequencies. We use a cluster analysis to learn the legitimate execution contexts of embedded applications and then monitor them at run-time to capture abnormal executions. Our prototype applied to a real-world open-source embedded application shows that the proposed method can effectively detect anomalous executions without relying on sophisticated analyses or affecting the critical execution paths.
从系统调用分布中学习执行上下文用于智能嵌入式系统异常检测
现有的异常检测技术并没有充分利用嵌入式设备的固有特性。在本文中,我们提出了一种使用系统调用频率分布来检测异常执行的轻量级方法。我们使用聚类分析来了解嵌入式应用程序的合法执行上下文,然后在运行时监视它们以捕获异常执行。我们的原型应用于一个真实的开源嵌入式应用程序,表明所提出的方法可以有效地检测异常执行,而不依赖于复杂的分析或影响关键的执行路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信