Asymmetry dynamic volatility forecast evaluations using interday and intraday data

C. Cheong, Z. Isa, A. H. S. M. Nor
{"title":"Asymmetry dynamic volatility forecast evaluations using interday and intraday data","authors":"C. Cheong, Z. Isa, A. H. S. M. Nor","doi":"10.1109/ISBEIA.2011.6088788","DOIUrl":null,"url":null,"abstract":"The accuracy of financial time series forecasts often relies on the model precision and also the availability of actual observations for forecast evaluations. This study aims to tackle these issues in order to obtain a suitable asymmetric time-varying volatility model that outperformed the forecast evaluations based on interday and intraday data. First, the model precision is examined based on the most appropriate time-varying volatility representation under the autoregressive conditional heteroscedascity framework. Second, the forecast evaluations are conducted under three loss functions using the volatility proxies and realized volatility. Finally, the empirical studies are implemented on two major financial markets and the estimated results are applied in quantifying their market risks.","PeriodicalId":358440,"journal":{"name":"2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA)","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBEIA.2011.6088788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The accuracy of financial time series forecasts often relies on the model precision and also the availability of actual observations for forecast evaluations. This study aims to tackle these issues in order to obtain a suitable asymmetric time-varying volatility model that outperformed the forecast evaluations based on interday and intraday data. First, the model precision is examined based on the most appropriate time-varying volatility representation under the autoregressive conditional heteroscedascity framework. Second, the forecast evaluations are conducted under three loss functions using the volatility proxies and realized volatility. Finally, the empirical studies are implemented on two major financial markets and the estimated results are applied in quantifying their market risks.
不对称动态波动预测评估使用间和日内数据
金融时间序列预测的准确性往往依赖于模型的精度和预测评价的实际观测的可用性。本研究旨在解决这些问题,以获得一个合适的非对称时变波动率模型,该模型优于基于日间和日内数据的预测评估。首先,在自回归条件异方差框架下,根据最合适的时变波动率表示检验模型精度。其次,利用波动率代理和实现波动率对三种损失函数进行预测评价。最后,对两个主要金融市场进行了实证研究,并将估计结果用于量化其市场风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信