Implementing Sparse Linear Algebra Kernels on the Lucata Pathfinder-A Computer

Géraud Krawezik, Shannon K. Kuntz, P. Kogge
{"title":"Implementing Sparse Linear Algebra Kernels on the Lucata Pathfinder-A Computer","authors":"Géraud Krawezik, Shannon K. Kuntz, P. Kogge","doi":"10.1109/HPEC43674.2020.9286207","DOIUrl":null,"url":null,"abstract":"We present the implementation of two sparse linear algebra kernels on a migratory memory-side processing architecture. The first is the Sparse Matrix-Vector (SpMV) multiplication, and the second is the Symmetric Gauss-Seidel (SymGS) method. Both were chosen as they account for the largest run time of the HPCG benchmark. We introduce the system used for the experiments, as well as its programming model and key aspects to get the most performance from it. We describe the data distribution used to allow an efficient parallelization of the algorithms, and their actual implementations. We then present hardware results and simulator traces to explain their behavior. We show an almost linear strong scaling with the code, and discuss future work and improvements.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present the implementation of two sparse linear algebra kernels on a migratory memory-side processing architecture. The first is the Sparse Matrix-Vector (SpMV) multiplication, and the second is the Symmetric Gauss-Seidel (SymGS) method. Both were chosen as they account for the largest run time of the HPCG benchmark. We introduce the system used for the experiments, as well as its programming model and key aspects to get the most performance from it. We describe the data distribution used to allow an efficient parallelization of the algorithms, and their actual implementations. We then present hardware results and simulator traces to explain their behavior. We show an almost linear strong scaling with the code, and discuss future work and improvements.
在Lucata Pathfinder-A计算机上实现稀疏线性代数核
我们提出了两个稀疏线性代数核在迁移内存端处理架构上的实现。第一种是稀疏矩阵向量(SpMV)乘法,第二种是对称高斯-塞德尔(SymGS)方法。之所以选择这两种方法,是因为它们占HPCG基准测试的最大运行时间。介绍了实验所用的系统,以及系统的编程模型和实现系统性能最大化的关键环节。我们描述了用于允许算法有效并行化的数据分布,以及它们的实际实现。然后,我们提供硬件结果和模拟器跟踪来解释它们的行为。我们展示了代码几乎是线性的强缩放,并讨论了未来的工作和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信