A comparision between PCA neural networks and the JPEG standard for performing image compression

P. R. Oliveira, R. Romero
{"title":"A comparision between PCA neural networks and the JPEG standard for performing image compression","authors":"P. R. Oliveira, R. Romero","doi":"10.1109/CYBVIS.1996.629449","DOIUrl":null,"url":null,"abstract":"Principal component analysis (PCA), also called Karhunen-Loeve transform, is a statistical method for multivariate data analysis that can be used in particular to reduce the data set being considered. There are two approaches for performing PCA. The first utilizes the classical statistical method and the other, artificial neural networks. In this paper, neural networks that performing PCA are presented and used to realize tomographic image compression. The results obtained are compared to that obtained by using JPEG compression standard technique and show the usefulness of neural networks for performing image compression.","PeriodicalId":103287,"journal":{"name":"Proceedings II Workshop on Cybernetic Vision","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings II Workshop on Cybernetic Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBVIS.1996.629449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Principal component analysis (PCA), also called Karhunen-Loeve transform, is a statistical method for multivariate data analysis that can be used in particular to reduce the data set being considered. There are two approaches for performing PCA. The first utilizes the classical statistical method and the other, artificial neural networks. In this paper, neural networks that performing PCA are presented and used to realize tomographic image compression. The results obtained are compared to that obtained by using JPEG compression standard technique and show the usefulness of neural networks for performing image compression.
用于图像压缩的PCA神经网络与JPEG标准的比较
主成分分析(PCA),也称为Karhunen-Loeve变换,是一种用于多变量数据分析的统计方法,可以特别用于减少正在考虑的数据集。执行PCA有两种方法。第一种方法采用经典统计方法,另一种方法采用人工神经网络。本文提出了神经网络进行主成分分析,并将其用于层析图像压缩。将得到的结果与使用JPEG压缩标准技术得到的结果进行了比较,证明了神经网络在图像压缩中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信