Application of the Kato-Temple Inequality for Eigenvalues of Symmetric Matrices to Numerical Algorithms with Shift for Singular Values

K. Kimura, M. Takata, M. Iwasaki, Y. Nakamura
{"title":"Application of the Kato-Temple Inequality for Eigenvalues of Symmetric Matrices to Numerical Algorithms with Shift for Singular Values","authors":"K. Kimura, M. Takata, M. Iwasaki, Y. Nakamura","doi":"10.1109/ICKS.2008.20","DOIUrl":null,"url":null,"abstract":"The Kato-Temple inequality for eigenvalues of symmetric matrices gives a lower bound of the minimal eigenvalue lambdam. Let A be a symmetric positive definite tridiagonal matrix defined by A = BT B, where B is bidiagonal. Then the so-called Kato-Temple bound gives a lower bound of the minimal singular value sigmam of B. In this paper we discuss how to apply the Kato-Temple inequality to shift of origin which appears in the mdLVs algorithm, for example, for computing all singular values of B. To make use of the Kato-Temple inequality a Rayleigh quotient for the matrix A = BT B and a right endpoint of interval where lambdam = sigmam 2 belongs are necessary. Then it is shown that the execution time of mdLVs with the standard shifts can be shorten by a possible choice of the generalized Newton bound or the Kato-Temple bound.","PeriodicalId":443068,"journal":{"name":"International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008)","volume":"668 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKS.2008.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Kato-Temple inequality for eigenvalues of symmetric matrices gives a lower bound of the minimal eigenvalue lambdam. Let A be a symmetric positive definite tridiagonal matrix defined by A = BT B, where B is bidiagonal. Then the so-called Kato-Temple bound gives a lower bound of the minimal singular value sigmam of B. In this paper we discuss how to apply the Kato-Temple inequality to shift of origin which appears in the mdLVs algorithm, for example, for computing all singular values of B. To make use of the Kato-Temple inequality a Rayleigh quotient for the matrix A = BT B and a right endpoint of interval where lambdam = sigmam 2 belongs are necessary. Then it is shown that the execution time of mdLVs with the standard shifts can be shorten by a possible choice of the generalized Newton bound or the Kato-Temple bound.
对称矩阵特征值的Kato-Temple不等式在奇异值移位数值算法中的应用
对称矩阵特征值的加藤-坦普尔不等式给出了最小特征值lambda的下界。设A是一个对称正定三对角矩阵,定义为A = BT B,其中B是双对角矩阵。然后,所谓的加托-坦普界给出了B的最小奇异值西格玛的下界。本文讨论了如何将加托-坦普不等式应用于mdlv算法中出现的原点移位,例如,计算B的所有奇异值。为了利用加托-坦普不等式,矩阵a = BT B的一个瑞利商和λ =西格玛2所在区间的一个右端点是必要的。然后证明了选择广义牛顿界或加藤-坦普尔界可以缩短具有标准位移的mdlv的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信