AutoEncoder-based Feature Ranking for Predicting Mild Cognitive Impairment Conversion using FDG-PET Images

Pham Tuan, N. Trung, M. Adel, E. Guedj
{"title":"AutoEncoder-based Feature Ranking for Predicting Mild Cognitive Impairment Conversion using FDG-PET Images","authors":"Pham Tuan, N. Trung, M. Adel, E. Guedj","doi":"10.1109/SSP53291.2023.10208072","DOIUrl":null,"url":null,"abstract":"Alzheimer’s Disease (AD) is a most common type of neurodegenerative brain disease in elderly people. Early diagnosis of AD is crucial for providing suitable care. Positron Emission Tomography (PET) images and machine learning can be used to support this purpose. In this paper, we present a method for ranking the effectiveness of brain regions of interest (ROI) to distinguish between stable mild cognitive impairment (sMCI) from progressive mild cognitive impairment (pMCI) in brain PET images based on AutoEncoder (AE). Experiments on the ADNI dataset show that our proposed method significantly improves classifier performance when compared to other popular feature ranking methods such as Fisher score, T-score, and Lasso. Our results suggest that instead of focusing on designing a complex AE structure, we can also use simple-but-multiple AEs for feature ranking. The proposed method could be easily applied to any image dataset where a feature selection is needed.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s Disease (AD) is a most common type of neurodegenerative brain disease in elderly people. Early diagnosis of AD is crucial for providing suitable care. Positron Emission Tomography (PET) images and machine learning can be used to support this purpose. In this paper, we present a method for ranking the effectiveness of brain regions of interest (ROI) to distinguish between stable mild cognitive impairment (sMCI) from progressive mild cognitive impairment (pMCI) in brain PET images based on AutoEncoder (AE). Experiments on the ADNI dataset show that our proposed method significantly improves classifier performance when compared to other popular feature ranking methods such as Fisher score, T-score, and Lasso. Our results suggest that instead of focusing on designing a complex AE structure, we can also use simple-but-multiple AEs for feature ranking. The proposed method could be easily applied to any image dataset where a feature selection is needed.
基于自编码器的特征排序预测FDG-PET图像的轻度认知障碍转换
阿尔茨海默病(AD)是老年人最常见的一种神经退行性脑疾病。阿尔茨海默病的早期诊断对于提供适当的护理至关重要。正电子发射断层扫描(PET)图像和机器学习可以用来支持这一目的。本文提出了一种基于AutoEncoder (AE)的脑PET图像感兴趣脑区(ROI)有效性排序方法,用于区分稳定型轻度认知障碍(sMCI)和进行性轻度认知障碍(pMCI)。在ADNI数据集上的实验表明,与其他流行的特征排序方法(如Fisher score、T-score和Lasso)相比,我们提出的方法显著提高了分类器的性能。我们的研究结果表明,我们也可以使用简单但多个AE来进行特征排序,而不是专注于设计复杂的AE结构。该方法可以很容易地应用于任何需要特征选择的图像数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信