Dataflow Programming for Stream Processing

Marcos Paulo Rocha, F. França, A. S. Nery, Leandro S. Guedes
{"title":"Dataflow Programming for Stream Processing","authors":"Marcos Paulo Rocha, F. França, A. S. Nery, Leandro S. Guedes","doi":"10.1109/SBAC-PADW.2017.26","DOIUrl":null,"url":null,"abstract":"Stream processing applications have high-demanding performance requirements that are hard to tackle using traditional parallel models on modern many-core architectures, such as GPUs. On the other hand, recent dataflow computing models can naturally exploit parallelism for a wide class of applications. This work presents an extension to an existing dataflow library for Java. The library extension implements high-level constructs with multiple command queues to enable the superposition of memory operations and kernel executions on GPUs. Experimental results show that significant speedup can be achieved for a subset of well-known stream processing applications: Volume Ray-Casting, Path-Tracing and Sobel Filter.","PeriodicalId":325990,"journal":{"name":"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PADW.2017.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Stream processing applications have high-demanding performance requirements that are hard to tackle using traditional parallel models on modern many-core architectures, such as GPUs. On the other hand, recent dataflow computing models can naturally exploit parallelism for a wide class of applications. This work presents an extension to an existing dataflow library for Java. The library extension implements high-level constructs with multiple command queues to enable the superposition of memory operations and kernel executions on GPUs. Experimental results show that significant speedup can be achieved for a subset of well-known stream processing applications: Volume Ray-Casting, Path-Tracing and Sobel Filter.
流处理的数据流编程
流处理应用程序具有高要求的性能要求,很难在现代多核架构(如gpu)上使用传统的并行模型来解决。另一方面,最近的数据流计算模型可以很自然地为大量应用程序利用并行性。这项工作提供了对现有Java数据流库的扩展。该库扩展实现了具有多个命令队列的高级结构,以便在gpu上实现内存操作和内核执行的叠加。实验结果表明,对于一些众所周知的流处理应用,如体射线投射、路径跟踪和索贝尔滤波,该算法可以实现显著的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信