Dynamic and evolving fuzzy concept lattices

Trevor P. Martin
{"title":"Dynamic and evolving fuzzy concept lattices","authors":"Trevor P. Martin","doi":"10.1109/EAIS.2013.6604101","DOIUrl":null,"url":null,"abstract":"Fuzzy formal concept analysis enables us to add structure to data by identifying coherent groups of related objects and attributes. In a situation where data is added dynamically, the concept lattice may evolve in different ways - either in content (more objects added to existing concepts) or in structure (entirely new concepts are created). This change can be monitored and quantified by means of a recently defined distance metric. In this paper, we present a new and more efficient algorithm for calculating the fuzzy distance between concept lattices, and illustrate the evolution of concept lattices by simple examples.","PeriodicalId":289995,"journal":{"name":"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2013.6604101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fuzzy formal concept analysis enables us to add structure to data by identifying coherent groups of related objects and attributes. In a situation where data is added dynamically, the concept lattice may evolve in different ways - either in content (more objects added to existing concepts) or in structure (entirely new concepts are created). This change can be monitored and quantified by means of a recently defined distance metric. In this paper, we present a new and more efficient algorithm for calculating the fuzzy distance between concept lattices, and illustrate the evolution of concept lattices by simple examples.
动态和演化的模糊概念格
模糊形式概念分析使我们能够通过识别相关对象和属性的连贯组来为数据添加结构。在动态添加数据的情况下,概念格可能以不同的方式发展——要么在内容上(向现有概念添加更多对象),要么在结构上(创建全新的概念)。这种变化可以通过最近定义的距离度量来监测和量化。本文提出了一种新的、更有效的概念格间模糊距离计算算法,并通过简单的例子说明了概念格的演化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信