On-chip learning in neurocomputers

H. Card, D. McNeill
{"title":"On-chip learning in neurocomputers","authors":"H. Card, D. McNeill","doi":"10.1109/CCECE.1996.548067","DOIUrl":null,"url":null,"abstract":"Artificial neural networks (ANNs) may be implemented as custom analog, digital or hybrid VLSI systems. This paper describes the tradeoffs among these approaches, based on work in our laboratory as well as at other institutions. A major theme of the work is the effects of limited precision in on-chip learning computations performed by the analog or digital circuits. Analog and low-precision digital circuits are found to be capable of reliably representing most ANN models, with area-efficient and energy-efficient implementations.","PeriodicalId":269440,"journal":{"name":"Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1996.548067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Artificial neural networks (ANNs) may be implemented as custom analog, digital or hybrid VLSI systems. This paper describes the tradeoffs among these approaches, based on work in our laboratory as well as at other institutions. A major theme of the work is the effects of limited precision in on-chip learning computations performed by the analog or digital circuits. Analog and low-precision digital circuits are found to be capable of reliably representing most ANN models, with area-efficient and energy-efficient implementations.
神经计算机的片上学习
人工神经网络(ann)可以实现自定义的模拟、数字或混合VLSI系统。本文描述了这些方法之间的权衡,基于我们实验室以及其他机构的工作。工作的一个主要主题是有限的精度在片上学习计算执行的模拟或数字电路的影响。模拟和低精度数字电路能够可靠地表示大多数人工神经网络模型,具有面积效率和节能实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信