{"title":"Beamforming Design for Wireless Coded Caching with Different Cache Sizes","authors":"Ayaka Urabe, K. Ishibashi, M. Salehi, Antti Tölli","doi":"10.1109/spawc51304.2022.9833813","DOIUrl":null,"url":null,"abstract":"This paper studies the performance of wireless coded caching over multiple-input and single-output (MISO) channels in a finite signal-to-noise power ratio (SNR) region when every user has a different cache memory size. We first propose multicast beamforming for the network with the conventional coded caching based on quadratic transform (QT) and then point out the non-optimality of the caching scheme when the spatial degree of freedom (DoF) is exploited. We hence formulate a new optimization problem to enhance the caching gain by minimizing the difference between the generated codewords. Numerical results confirm the non-optimality of the conventional coded caching in terms of the average transmission rate and the improvement of our proposed caching.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9833813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the performance of wireless coded caching over multiple-input and single-output (MISO) channels in a finite signal-to-noise power ratio (SNR) region when every user has a different cache memory size. We first propose multicast beamforming for the network with the conventional coded caching based on quadratic transform (QT) and then point out the non-optimality of the caching scheme when the spatial degree of freedom (DoF) is exploited. We hence formulate a new optimization problem to enhance the caching gain by minimizing the difference between the generated codewords. Numerical results confirm the non-optimality of the conventional coded caching in terms of the average transmission rate and the improvement of our proposed caching.