Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, Charles Zhang
{"title":"Precise Divide-By-Zero Detection with Affirmative Evidence","authors":"Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, Charles Zhang","doi":"10.1145/3510003.3510066","DOIUrl":null,"url":null,"abstract":"The static detection of divide-by-zero, a common programming error, is particularly prone to false positives because conventional static analysis reports a divide-by-zero bug whenever it cannot prove the safety property – the divisor variable is not zero in all executions. When reasoning the program semantics over a large number of under-constrained variables, conventional static analyses significantly loose the bounds of divisor variables, which easily fails the safety proof and leads to a massive number of false positives. We propose a static analysis to detect divide-by-zero bugs taking additional evidence for under-constrained variables into consideration. Based on an extensive empirical study of known divide-by-zero bugs, we no longer arbitrarily report a bug once the safety verification fails. Instead, we actively look for affirmative evidences, namely source evidence and bound evidence, that imply a high possibility of the bug to be triggerable at runtime. When applying our tool Wit to the real-world software such as the Linux kernel, we have found 72 new divide-by-zero bugs with a low false positive rate of 22%.","PeriodicalId":202896,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510003.3510066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The static detection of divide-by-zero, a common programming error, is particularly prone to false positives because conventional static analysis reports a divide-by-zero bug whenever it cannot prove the safety property – the divisor variable is not zero in all executions. When reasoning the program semantics over a large number of under-constrained variables, conventional static analyses significantly loose the bounds of divisor variables, which easily fails the safety proof and leads to a massive number of false positives. We propose a static analysis to detect divide-by-zero bugs taking additional evidence for under-constrained variables into consideration. Based on an extensive empirical study of known divide-by-zero bugs, we no longer arbitrarily report a bug once the safety verification fails. Instead, we actively look for affirmative evidences, namely source evidence and bound evidence, that imply a high possibility of the bug to be triggerable at runtime. When applying our tool Wit to the real-world software such as the Linux kernel, we have found 72 new divide-by-zero bugs with a low false positive rate of 22%.