{"title":"The Generalized Poynting Theorem for the General Field and Solution of the 4/3 Problem","authors":"Sergey G. Fedosin","doi":"10.18052/WWW.SCIPRESS.COM/IFSL.14.19","DOIUrl":null,"url":null,"abstract":"The generalized Poynting theorem is applied to the equilibrium system of particles, both inside and outside the system. The particles are bound to each other by means of the electromagnetic and gravitational fields, acceleration field and pressure field. As a result, the correlation is found between the acceleration field coefficient, the pressure field coefficient, the gravitational constant and the vacuum permittivity. This correlation also depends on the ratio of the charge density to the mass density of the particles inside the sphere. Due to the correlation between the given field coefficients the 4/3 problem is solved and the expression for the relativistic energy of the system is refined.","PeriodicalId":262344,"journal":{"name":"International Frontier Science Letters","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Frontier Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/IFSL.14.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The generalized Poynting theorem is applied to the equilibrium system of particles, both inside and outside the system. The particles are bound to each other by means of the electromagnetic and gravitational fields, acceleration field and pressure field. As a result, the correlation is found between the acceleration field coefficient, the pressure field coefficient, the gravitational constant and the vacuum permittivity. This correlation also depends on the ratio of the charge density to the mass density of the particles inside the sphere. Due to the correlation between the given field coefficients the 4/3 problem is solved and the expression for the relativistic energy of the system is refined.