The Adjoint Gradient Method for Time-Optimal Control of a Moon Landing: Ascent, Descent, and Abort

Philipp Eichmeir, K. Nachbagauer, W. Steiner
{"title":"The Adjoint Gradient Method for Time-Optimal Control of a Moon Landing: Ascent, Descent, and Abort","authors":"Philipp Eichmeir, K. Nachbagauer, W. Steiner","doi":"10.1115/detc2020-22034","DOIUrl":null,"url":null,"abstract":"\n This article illustrates a novel approach for the determination of time-optimal controls for dynamic systems under observance of end conditions. Such problems arise in robotics, e.g. if the control of a robot has to be designed such that the time for a rest-to-rest maneuver becomes a minimum. So far, such problems have been considered as two-point boundary value problems, which are hard to solve and require an initial guess close to the optimal solution. The aim of this contribution is the development of an iterative, gradient based solution strategy for solving such problems. As an example, a Moon-landing as in the Apollo program, will be considered. In detail, we discuss the ascent, descent and abort maneuvers of the Apollo Lunar Excursion Module (LEM) to and from the Moon’s surface in minimum time. The goal is to find the control of the thrust nozzle of the LEM to minimize the final time.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article illustrates a novel approach for the determination of time-optimal controls for dynamic systems under observance of end conditions. Such problems arise in robotics, e.g. if the control of a robot has to be designed such that the time for a rest-to-rest maneuver becomes a minimum. So far, such problems have been considered as two-point boundary value problems, which are hard to solve and require an initial guess close to the optimal solution. The aim of this contribution is the development of an iterative, gradient based solution strategy for solving such problems. As an example, a Moon-landing as in the Apollo program, will be considered. In detail, we discuss the ascent, descent and abort maneuvers of the Apollo Lunar Excursion Module (LEM) to and from the Moon’s surface in minimum time. The goal is to find the control of the thrust nozzle of the LEM to minimize the final time.
伴随梯度法用于登月的时间最优控制:上升、下降和中止
本文阐述了一种确定动态系统在遵守末端条件下的时间最优控制的新方法。这类问题出现在机器人技术中,例如,如果必须设计机器人的控制,使静止到静止的机动时间最短。到目前为止,这类问题一直被认为是两点边值问题,很难求解,需要一个接近最优解的初始猜测。这个贡献的目的是开发一个迭代的,基于梯度的解决策略来解决这些问题。作为一个例子,我们将考虑阿波罗计划中的登月计划。详细讨论了阿波罗登月舱(登月舱)在最短时间内往返月球表面的上升、下降和中止操作。我们的目标是找到对登月舱推力喷管的控制使最终时间最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信