Automatic Setting of Article Format Through Neural Networks

Nong Ye, B. Zhao
{"title":"Automatic Setting of Article Format Through Neural Networks","authors":"Nong Ye, B. Zhao","doi":"10.1207/s15327590ijhc0901_5","DOIUrl":null,"url":null,"abstract":"The automatic format-setting of journal articles for reducing the workload of computer users involves two processes: automatic acquisition of article format and automatic recall of article formal. Several neural networks have been explored to implement the two processes. The advantages and disadvantages of these neural networks are evaluated in comparison with capabilities of conventional computer programs. A heteroassociative back-propagation network has been developed for the automatic acquisition process. This network excels over computer programs because of its abilities in learning and generalizing implicit knowledge from examples. A bidirectional associative memory network, a Boltzman network, and an autoassociative back-propagation network have been investigated for the automatic recall process. None of them excel over computer programs in terms of recall accuracy.","PeriodicalId":208962,"journal":{"name":"Int. J. Hum. Comput. Interact.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Hum. Comput. Interact.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1207/s15327590ijhc0901_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The automatic format-setting of journal articles for reducing the workload of computer users involves two processes: automatic acquisition of article format and automatic recall of article formal. Several neural networks have been explored to implement the two processes. The advantages and disadvantages of these neural networks are evaluated in comparison with capabilities of conventional computer programs. A heteroassociative back-propagation network has been developed for the automatic acquisition process. This network excels over computer programs because of its abilities in learning and generalizing implicit knowledge from examples. A bidirectional associative memory network, a Boltzman network, and an autoassociative back-propagation network have been investigated for the automatic recall process. None of them excel over computer programs in terms of recall accuracy.
通过神经网络自动设置文章格式
为减少计算机用户的工作量,期刊论文的自动格式设置包括两个过程:文章格式的自动获取和文章格式的自动检索。一些神经网络已经被探索来实现这两个过程。将这些神经网络的优缺点与传统计算机程序的能力进行了比较。针对自动采集过程,开发了一种异联想反向传播网络。该网络优于计算机程序,因为它具有从示例中学习和概括隐含知识的能力。研究了双向联想记忆网络、Boltzman网络和自联想反向传播网络在自动回忆过程中的应用。在回忆准确性方面,它们都没有超过计算机程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信