Ballistic transport characteristic of ingaas quantum well surface channel MOSFET including effects of physical device parameter

A. Shadman, Ehsanur Rahman, S. Biswas, Kanak Datta, Q. Khosru
{"title":"Ballistic transport characteristic of ingaas quantum well surface channel MOSFET including effects of physical device parameter","authors":"A. Shadman, Ehsanur Rahman, S. Biswas, Kanak Datta, Q. Khosru","doi":"10.1109/ICECE.2014.7026914","DOIUrl":null,"url":null,"abstract":"In this paper, impact of device & process parameter variation on quantum ballistic Current-Voltage (I-V) characteristics of a surface channel, High K stack gate Quantum Well MOSFET is simulated. Physical device parameters like channel thickness, gate dielectric thickness and process parameters like doping density have direct effects on quantum ballistic current. We use mode space approach with NEGF formalism to simulate Current-Voltage (I-V) characteristics. Short Channel effects (SCE) are studied from the simulation for these variations. Observed effect is scaling dielectric & channel thickness results in better subthreshold slope & Drain induced barrier lowering at the cost of On-current. By increasing doping concentration, ballistic current can be improved. However with increasing doping density, SCE effects are compromised.","PeriodicalId":335492,"journal":{"name":"8th International Conference on Electrical and Computer Engineering","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE.2014.7026914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, impact of device & process parameter variation on quantum ballistic Current-Voltage (I-V) characteristics of a surface channel, High K stack gate Quantum Well MOSFET is simulated. Physical device parameters like channel thickness, gate dielectric thickness and process parameters like doping density have direct effects on quantum ballistic current. We use mode space approach with NEGF formalism to simulate Current-Voltage (I-V) characteristics. Short Channel effects (SCE) are studied from the simulation for these variations. Observed effect is scaling dielectric & channel thickness results in better subthreshold slope & Drain induced barrier lowering at the cost of On-current. By increasing doping concentration, ballistic current can be improved. However with increasing doping density, SCE effects are compromised.
ingaas量子阱表面沟道MOSFET的弹道输运特性及物理器件参数的影响
本文模拟了器件和工艺参数变化对表面通道高K堆叠栅量子阱MOSFET量子弹道电流-电压特性的影响。通道厚度、栅极介质厚度等物理器件参数和掺杂密度等工艺参数对量子弹道电流有直接影响。我们使用具有NEGF形式的模式空间方法来模拟电流-电压(I-V)特性。通过对这些变化的仿真,研究了短信道效应。观察到的效果是,缩放介质和通道厚度可以获得更好的亚阈值斜率和漏极诱导势垒降低,但代价是电流。通过增加掺杂浓度,可以提高弹道电流。然而,随着掺杂密度的增加,SCE效应受到损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信