HITSZ-ICRC: A Report for SMM4H Shared Task 2019-Automatic Classification and Extraction of Adverse Effect Mentions in Tweets

Shuai Chen, Yuanhang Huang, Xiao-Ping Huang, Haoming Qin, Jun Yan, Buzhou Tang
{"title":"HITSZ-ICRC: A Report for SMM4H Shared Task 2019-Automatic Classification and Extraction of Adverse Effect Mentions in Tweets","authors":"Shuai Chen, Yuanhang Huang, Xiao-Ping Huang, Haoming Qin, Jun Yan, Buzhou Tang","doi":"10.18653/v1/W19-3206","DOIUrl":null,"url":null,"abstract":"This is the system description of the Harbin Institute of Technology Shenzhen (HITSZ) team for the first and second subtasks of the fourth Social Media Mining for Health Applications (SMM4H) shared task in 2019. The two subtasks are automatic classification and extraction of adverse effect mentions in tweets. The systems for the two subtasks are based on bidirectional encoder representations from transformers (BERT), and achieves promising results. Among the systems we developed for subtask1, the best F1-score was 0.6457, for subtask2, the best relaxed F1-score and the best strict F1-score were 0.614 and 0.407 respectively. Our system ranks first among all systems on subtask1.","PeriodicalId":265570,"journal":{"name":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This is the system description of the Harbin Institute of Technology Shenzhen (HITSZ) team for the first and second subtasks of the fourth Social Media Mining for Health Applications (SMM4H) shared task in 2019. The two subtasks are automatic classification and extraction of adverse effect mentions in tweets. The systems for the two subtasks are based on bidirectional encoder representations from transformers (BERT), and achieves promising results. Among the systems we developed for subtask1, the best F1-score was 0.6457, for subtask2, the best relaxed F1-score and the best strict F1-score were 0.614 and 0.407 respectively. Our system ranks first among all systems on subtask1.
hitsz -红十字国际委员会:2019年SMM4H共享任务报告——推文中不利影响提及的自动分类和提取
这是哈尔滨工业大学深圳分校(HITSZ)团队对2019年第四届健康应用社交媒体挖掘(SMM4H)共享任务第一、二个子任务的系统描述。这两个子任务是tweets中不利影响提及的自动分类和提取。这两个子任务的系统基于变压器的双向编码器表示(BERT),并取得了令人满意的结果。其中,subtask1的最佳f1得分为0.6457,subtask2的最佳宽松f1得分为0.614,最佳严格f1得分为0.407。我们的系统在子任务1上排名第一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信