Tracking Creative Musical Structure: The Hunt for the Intrinsically Motivated Generative Agent

Benjamin D. Smith
{"title":"Tracking Creative Musical Structure: The Hunt for the Intrinsically Motivated Generative Agent","authors":"Benjamin D. Smith","doi":"10.1609/aiide.v9i5.12648","DOIUrl":null,"url":null,"abstract":"\n \n Neural networks have been employed to learn, generalize, and generate musical pieces with a constrained notion of creativity. Yet, these computational models typically suffer from an inability to characterize and reproduce long-term dependencies indicative of musical structure. Hierarchical and deep learning models propose to remedy this deficiency, but remain to be adequately proven. We describe and examine a novel dynamic bayesian network model with the goal of learning and reproducing longer-term formal musical structures. Incorporating a computational model of intrinsic motivation and novelty, this hierarchical probabilistic model is able to generate pastiches based on exemplars.\n \n","PeriodicalId":249108,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v9i5.12648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Neural networks have been employed to learn, generalize, and generate musical pieces with a constrained notion of creativity. Yet, these computational models typically suffer from an inability to characterize and reproduce long-term dependencies indicative of musical structure. Hierarchical and deep learning models propose to remedy this deficiency, but remain to be adequately proven. We describe and examine a novel dynamic bayesian network model with the goal of learning and reproducing longer-term formal musical structures. Incorporating a computational model of intrinsic motivation and novelty, this hierarchical probabilistic model is able to generate pastiches based on exemplars.
跟踪创造性音乐结构:寻找内在动机生成代理
神经网络已被用于学习、概括和生成具有受限创意概念的音乐作品。然而,这些计算模型通常无法描述和重现音乐结构的长期依赖关系。层次学习和深度学习模型建议弥补这一缺陷,但仍有待充分证明。我们描述并研究了一种新的动态贝叶斯网络模型,其目标是学习和再现长期的正式音乐结构。结合了内在动机和新颖性的计算模型,这种分层概率模型能够基于样本生成补丁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信