A Non-local Model of the Propagation of Action Potentials in Myelinated Neurons

C. Drapaca, S. Ozdemir, E. Proctor
{"title":"A Non-local Model of the Propagation of Action Potentials in Myelinated Neurons","authors":"C. Drapaca, S. Ozdemir, E. Proctor","doi":"10.28991/esj-2020-01219","DOIUrl":null,"url":null,"abstract":"Myelinated neurons are characterized by the presence of myelin, a multilaminated wrapping around the axons formed by specialized neuroglial cells. Myelin acts as an electrical insulator and therefore, in myelinated neurons, the action potentials do not propagate within the axons but happen only at the nodes of Ranvier which are gaps in the axonal myelination. Recent advancements in brain science have shown that the shapes, timings, and propagation speeds of these so-called saltatory action potentials are controlled by various biochemical interactions among neurons, glial cells and the extracellular space. Given the complexity of brain's structure and processes, the work hypothesis made in this paper is that non-local effects are involved in the optimal propagation of action potentials. A non-local model of the action potentials propagation in myelinated neurons is proposed that involves spatial derivatives of fractional order. The effects of non-locality on the distribution of the membrane potential are investigated using numerical simulations.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/esj-2020-01219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Myelinated neurons are characterized by the presence of myelin, a multilaminated wrapping around the axons formed by specialized neuroglial cells. Myelin acts as an electrical insulator and therefore, in myelinated neurons, the action potentials do not propagate within the axons but happen only at the nodes of Ranvier which are gaps in the axonal myelination. Recent advancements in brain science have shown that the shapes, timings, and propagation speeds of these so-called saltatory action potentials are controlled by various biochemical interactions among neurons, glial cells and the extracellular space. Given the complexity of brain's structure and processes, the work hypothesis made in this paper is that non-local effects are involved in the optimal propagation of action potentials. A non-local model of the action potentials propagation in myelinated neurons is proposed that involves spatial derivatives of fractional order. The effects of non-locality on the distribution of the membrane potential are investigated using numerical simulations.
有髓鞘神经元动作电位传播的非局部模型
髓鞘神经元的特点是髓鞘的存在,髓鞘是一种多层膜,包裹在由特化神经胶质细胞形成的轴突周围。髓磷脂作为电绝缘体,因此,在有髓鞘的神经元中,动作电位不会在轴突内传播,而只发生在Ranvier节点上,这是轴突髓鞘形成的间隙。脑科学的最新进展表明,这些所谓的跳跃动作电位的形状、时间和传播速度是由神经元、神经胶质细胞和细胞外空间之间的各种生化相互作用控制的。鉴于大脑结构和过程的复杂性,本文提出了非局部效应参与动作电位最优传播的工作假设。提出了一种包含分数阶空间导数的有髓神经元动作电位传播的非局部模型。利用数值模拟研究了非局域性对膜电位分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信