SARABANDE: 3/4 Point Correlation Functions with Fast Fourier Transforms

J. Sunseri, Z. Slepian, S. Portillo, Jiamin Hou, Sule Kahraman, D. Finkbeiner
{"title":"SARABANDE: 3/4 Point Correlation Functions with Fast Fourier Transforms","authors":"J. Sunseri, Z. Slepian, S. Portillo, Jiamin Hou, Sule Kahraman, D. Finkbeiner","doi":"10.1093/rasti/rzad003","DOIUrl":null,"url":null,"abstract":"\n We present a new python package sarabande for measuring 3 & 4 Point Correlation Functions (3/4 PCFs) in $\\mathcal {O} (N_{\\mathrm{g}}\\log N_{\\mathrm{g}})$ time using Fast Fourier Transforms (FFTs), with Ng the number of grid points used for the FFT. sarabande can measure both projected and full 3 and 4 PCFs on gridded 2D and 3D datasets. The general technique is to generate suitable angular basis functions on an underlying grid, radially bin these to create kernels, and convolve these kernels with the original gridded data to obtain expansion coefficients about every point simultaneously. These coefficients are then combined to give us the 3/4 PCF as expanded in our basis. We apply sarabande to simulations of the Interstellar Medium (ISM) to show the results and scaling of calculating both the full and projected 3/4 PCFs.","PeriodicalId":367327,"journal":{"name":"RAS Techniques and Instruments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAS Techniques and Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rasti/rzad003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a new python package sarabande for measuring 3 & 4 Point Correlation Functions (3/4 PCFs) in $\mathcal {O} (N_{\mathrm{g}}\log N_{\mathrm{g}})$ time using Fast Fourier Transforms (FFTs), with Ng the number of grid points used for the FFT. sarabande can measure both projected and full 3 and 4 PCFs on gridded 2D and 3D datasets. The general technique is to generate suitable angular basis functions on an underlying grid, radially bin these to create kernels, and convolve these kernels with the original gridded data to obtain expansion coefficients about every point simultaneously. These coefficients are then combined to give us the 3/4 PCF as expanded in our basis. We apply sarabande to simulations of the Interstellar Medium (ISM) to show the results and scaling of calculating both the full and projected 3/4 PCFs.
快速傅里叶变换的3/4点相关函数
我们提出了一个新的python包sarabande,用于使用快速傅里叶变换(FFT)在$\mathcal {O} (N_{\ mathm {g}}\log N_{\ mathm {g}})$ time中测量3和4点相关函数(3/4 pcf),其中Ng是用于FFT的网格点数。sarabande可以在网格化的2D和3D数据集上测量投影和完整的3和4个pcf。一般的技术是在底层网格上生成合适的角度基函数,径向化这些基函数来创建核,并将这些核与原始网格数据进行卷积,以同时获得关于每个点的展开系数。然后将这些系数组合起来,得到在基中展开的3/4 PCF。我们将sarabande应用于星际介质(ISM)的模拟,以显示计算完整和投影的3/4 pcf的结果和缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信