Global and Personalized Query Probability for Obfuscation-Based Web Search

Hongya Wang, Wenyan Liu, Xiaoling Wang, Yingjie Zhang
{"title":"Global and Personalized Query Probability for Obfuscation-Based Web Search","authors":"Hongya Wang, Wenyan Liu, Xiaoling Wang, Yingjie Zhang","doi":"10.1109/ICBK50248.2020.00045","DOIUrl":null,"url":null,"abstract":"Over the past few years, the volumes of digital information have increased dramatically. Web search engines become indispensable to our daily lives due to their capability of filtering relevant information. The web search engines collect users’ online behavior data which implies their personalized interest, even contains sensitive information. A malicious attacker may benefit from advertising or manipulating political campaigns, which poses a serious threat to public security. In this paper, we propose two new methods to generate dummy queries base on global and personalized queries’ probability. The generated anonymous queries set has greater information entropy which helps to protect user’s intent in web search. Experiment results verify the validity of our methods.","PeriodicalId":432857,"journal":{"name":"2020 IEEE International Conference on Knowledge Graph (ICKG)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Knowledge Graph (ICKG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK50248.2020.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past few years, the volumes of digital information have increased dramatically. Web search engines become indispensable to our daily lives due to their capability of filtering relevant information. The web search engines collect users’ online behavior data which implies their personalized interest, even contains sensitive information. A malicious attacker may benefit from advertising or manipulating political campaigns, which poses a serious threat to public security. In this paper, we propose two new methods to generate dummy queries base on global and personalized queries’ probability. The generated anonymous queries set has greater information entropy which helps to protect user’s intent in web search. Experiment results verify the validity of our methods.
基于模糊的Web搜索的全局和个性化查询概率
在过去的几年中,数字信息的数量急剧增加。网络搜索引擎因其过滤相关信息的能力而成为我们日常生活中不可或缺的一部分。网络搜索引擎收集用户的上网行为数据,这些数据暗示着用户的个性化兴趣,甚至包含敏感信息。恶意攻击者可能从广告或操纵政治活动中获益,这对公共安全构成严重威胁。本文提出了基于全局查询概率和个性化查询概率生成虚拟查询的两种新方法。生成的匿名查询集具有较大的信息熵,有助于保护用户在网络搜索中的意图。实验结果验证了方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信