A testbed for automatic modulation recognition using artificial neural networks

S.C. Kremer, J. Shiels
{"title":"A testbed for automatic modulation recognition using artificial neural networks","authors":"S.C. Kremer, J. Shiels","doi":"10.1109/CCECE.1997.614791","DOIUrl":null,"url":null,"abstract":"Automatic modulation recognition, the identification of the modulation scheme used to encode an unknown radio transmission, is an important component of electronic warfare communications systems. Existing technology is able to classify reliably (success rate /spl ges/90%) only at signal-to-noise ratios (SNRs) above 10 dB. In this paper, an artificial neural network is developed to classify signals with SNRs as low as 5 dB. Preprocessing steps and network performance on an initial test set are described.","PeriodicalId":359446,"journal":{"name":"CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1997.614791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Automatic modulation recognition, the identification of the modulation scheme used to encode an unknown radio transmission, is an important component of electronic warfare communications systems. Existing technology is able to classify reliably (success rate /spl ges/90%) only at signal-to-noise ratios (SNRs) above 10 dB. In this paper, an artificial neural network is developed to classify signals with SNRs as low as 5 dB. Preprocessing steps and network performance on an initial test set are described.
基于人工神经网络的调制自动识别实验平台
自动调制识别,是识别用于编码未知无线电传输的调制方案,是电子战通信系统的重要组成部分。现有技术只能在信噪比(SNRs)高于10 dB的情况下进行可靠分类(成功率/spl ges/90%)。本文开发了一种人工神经网络,对信噪比低至5db的信号进行分类。描述了在初始测试集上的预处理步骤和网络性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信