ScaleHD

Sizhe Zhang, M. Imani, Xun Jiao
{"title":"ScaleHD","authors":"Sizhe Zhang, M. Imani, Xun Jiao","doi":"10.1145/3508352.3549376","DOIUrl":null,"url":null,"abstract":"Brain-inspired hyperdimensional computing (HDC) has demonstrated promising capability in various cognition tasks such as robotics, bio-medical signal analysis, and natural language processing. Compared to deep neural networks, HDC models show advantages such as light-weight model and one/few-shot learning capabilities, making it a promising alternative paradigm to traditional resource-demanding deep learning models particularly in edge devices with limited resources. Despite the growing popularity of HDC, the robustness of HDC models and the approaches to enhance HDC robustness has not been systematically analyzed and sufficiently examined. HDC relies on high-dimensional numerical vectors referred to as hypervectors (HV) to perform cognition tasks and the values inside the HVs are critical to the robustness of an HDC model. We propose ScaleHD, an adaptive scaling method that scales the value of HVs in the associative memory of an HDC model to enhance the robustness of HDC models. We propose three different modes of ScaleHD including Global-ScaleHD, Class-ScaleHD, and (Class + Clip)-ScaleHD which are based on different adaptive scaling strategies. Results show that ScaleHD is able to enhance HDC robustness against memory errors up to 10, 000X. Moreover, we leverage the enhanced HDC robustness in exchange for energy saving via voltage scaling method. Experimental results show that ScaleHD can reduce energy consumption on HDC memory system up to 72.2% with less than 1% accuracy loss.","PeriodicalId":367046,"journal":{"name":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Brain-inspired hyperdimensional computing (HDC) has demonstrated promising capability in various cognition tasks such as robotics, bio-medical signal analysis, and natural language processing. Compared to deep neural networks, HDC models show advantages such as light-weight model and one/few-shot learning capabilities, making it a promising alternative paradigm to traditional resource-demanding deep learning models particularly in edge devices with limited resources. Despite the growing popularity of HDC, the robustness of HDC models and the approaches to enhance HDC robustness has not been systematically analyzed and sufficiently examined. HDC relies on high-dimensional numerical vectors referred to as hypervectors (HV) to perform cognition tasks and the values inside the HVs are critical to the robustness of an HDC model. We propose ScaleHD, an adaptive scaling method that scales the value of HVs in the associative memory of an HDC model to enhance the robustness of HDC models. We propose three different modes of ScaleHD including Global-ScaleHD, Class-ScaleHD, and (Class + Clip)-ScaleHD which are based on different adaptive scaling strategies. Results show that ScaleHD is able to enhance HDC robustness against memory errors up to 10, 000X. Moreover, we leverage the enhanced HDC robustness in exchange for energy saving via voltage scaling method. Experimental results show that ScaleHD can reduce energy consumption on HDC memory system up to 72.2% with less than 1% accuracy loss.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信