Graph mining indoor tracking data for social interaction analysis

Mani Williams, J. Burry, Asha Rao
{"title":"Graph mining indoor tracking data for social interaction analysis","authors":"Mani Williams, J. Burry, Asha Rao","doi":"10.1109/PERCOMW.2015.7133984","DOIUrl":null,"url":null,"abstract":"With the advancement in wireless sensor networks (WSN) researchers in social network analysis (SNA) now have access to larger and more complex datasets that describe human interactions in the physical space. Studies in WSN thrive on accuracy and robustness whereas SNA operates on a higher level of data abstraction. Graph mining is a bridge between these two fields. This paper investigates two approaches to graph mining and compares their efficiency and appropriateness as the input systems for a social interaction analysis process.","PeriodicalId":180959,"journal":{"name":"2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2015.7133984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the advancement in wireless sensor networks (WSN) researchers in social network analysis (SNA) now have access to larger and more complex datasets that describe human interactions in the physical space. Studies in WSN thrive on accuracy and robustness whereas SNA operates on a higher level of data abstraction. Graph mining is a bridge between these two fields. This paper investigates two approaches to graph mining and compares their efficiency and appropriateness as the input systems for a social interaction analysis process.
图挖掘室内跟踪数据的社会互动分析
随着无线传感器网络(WSN)的发展,社会网络分析(SNA)的研究人员现在可以使用更大和更复杂的数据集来描述物理空间中的人类互动。WSN的研究主要集中在准确性和鲁棒性上,而SNA的研究主要集中在更高层次的数据抽象上。图挖掘是这两个领域之间的桥梁。本文研究了图挖掘的两种方法,并比较了它们作为社会互动分析过程输入系统的效率和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信