An Absorbing Markov Chain Model for Stochastic Memristive Devices

Adil Malik, C. Papavassiliou, S. Stathopoulos
{"title":"An Absorbing Markov Chain Model for Stochastic Memristive Devices","authors":"Adil Malik, C. Papavassiliou, S. Stathopoulos","doi":"10.1109/mocast54814.2022.9837672","DOIUrl":null,"url":null,"abstract":"In this paper we elaborate and verify a data-driven modelling approach, pertaining to the stochastic trajectory of the memristance upon the application of pulses. Our proposed approach is to model the memristor’s behaviour as a time-homogeneous Markov chain. We introduce a simplified method that estimates the states and the state transition probabilities of the model from device measurements. We show that such a memristor model, generally corresponds to an absorbing Markov chain, the physical implications of which are also discussed. We apply this modelling methodology to real-world Pt/TiO2/Pt memristors and present results that validate its effectiveness in capturing the stochastic features of these devices over various timescales.","PeriodicalId":122414,"journal":{"name":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mocast54814.2022.9837672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we elaborate and verify a data-driven modelling approach, pertaining to the stochastic trajectory of the memristance upon the application of pulses. Our proposed approach is to model the memristor’s behaviour as a time-homogeneous Markov chain. We introduce a simplified method that estimates the states and the state transition probabilities of the model from device measurements. We show that such a memristor model, generally corresponds to an absorbing Markov chain, the physical implications of which are also discussed. We apply this modelling methodology to real-world Pt/TiO2/Pt memristors and present results that validate its effectiveness in capturing the stochastic features of these devices over various timescales.
随机记忆器件的吸收马尔可夫链模型
在本文中,我们阐述并验证了一种数据驱动的建模方法,该方法与脉冲应用时记忆电阻的随机轨迹有关。我们提出的方法是将忆阻器的行为建模为时间齐次的马尔可夫链。我们介绍了一种简化的方法,从设备测量中估计模型的状态和状态转移概率。我们表明,这种忆阻器模型通常对应于吸收马尔可夫链,并讨论了其物理含义。我们将这种建模方法应用于现实世界的Pt/TiO2/Pt忆阻器,并提出了验证其在捕获这些器件在不同时间尺度上的随机特征方面的有效性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信