Effects of Data Augmentation Techniques on Classification Performance in Knee MRIs

Elif Nur Küçük, Aybars Uğur
{"title":"Effects of Data Augmentation Techniques on Classification Performance in Knee MRIs","authors":"Elif Nur Küçük, Aybars Uğur","doi":"10.1109/HORA58378.2023.10155785","DOIUrl":null,"url":null,"abstract":"- The role of the amount of data used in increasing the effectiveness of deep learning models is very important. Due to the insufficient publicly available data in some sub-fields of health, data augmentation is vital. This study proposes an approach to improve the experimental work process in deep learning-based injury detection using data augmentation techniques on knee Magnetic Resonance (MR) images. The study is also one of the few in the body of literature to examine the impact of data augmentation in hard tissues. The effect of data augmentation on classification performance is tested using various transfer learning models, and the highest success rates in this study are determined for three classes. Forecasting achievements: the accuracy is 89.98% in the abnormal, 80.35% in the anterior cruciate ligament, and 76.66% in the meniscus classes. As a result of the experiments, it has been seen that the AutoAugment architecture works faster and generally gives more successful results than other augmentation methods.","PeriodicalId":247679,"journal":{"name":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HORA58378.2023.10155785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

- The role of the amount of data used in increasing the effectiveness of deep learning models is very important. Due to the insufficient publicly available data in some sub-fields of health, data augmentation is vital. This study proposes an approach to improve the experimental work process in deep learning-based injury detection using data augmentation techniques on knee Magnetic Resonance (MR) images. The study is also one of the few in the body of literature to examine the impact of data augmentation in hard tissues. The effect of data augmentation on classification performance is tested using various transfer learning models, and the highest success rates in this study are determined for three classes. Forecasting achievements: the accuracy is 89.98% in the abnormal, 80.35% in the anterior cruciate ligament, and 76.66% in the meniscus classes. As a result of the experiments, it has been seen that the AutoAugment architecture works faster and generally gives more successful results than other augmentation methods.
数据增强技术对膝关节mri分类性能的影响
-数据量在提高深度学习模型有效性方面的作用非常重要。由于某些卫生子领域的公开数据不足,数据扩充至关重要。本研究提出了一种利用膝关节磁共振(MR)图像数据增强技术改进基于深度学习的损伤检测实验工作流程的方法。该研究也是为数不多的研究硬组织数据增强影响的文献之一。使用各种迁移学习模型测试了数据增强对分类性能的影响,并确定了本研究中三个类别的最高成功率。预测结果:异常组准确率为89.98%,前交叉韧带组准确率为80.35%,半月板组准确率为76.66%。实验结果表明,与其他增强方法相比,AutoAugment体系结构的工作速度更快,并且通常给出了更成功的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信