{"title":"Quo Vadis Signal? Automated Directionality Extraction for Post-Programming Verification of a Transistor-Level Programmable Fabric","authors":"Apurva Jain, T. Broadfoot, Y. Makris, C. Sechen","doi":"10.23919/DATE56975.2023.10136928","DOIUrl":null,"url":null,"abstract":"We discuss the challenges related with developing a post-programming verification solution for a TRAnsistor-level Programmable fabric (TRAP). Toward achieving high density, the TRAP architecture employs bidirectionally-operated pass transis-tors in the implementation of its logic and interconnect network. While it is possible to model such transistors through appropriate primitives of hardware description languages (HDL) to enable simulation-based validation, Logic Equivalence Checking (LEC) methods and tools do not support such primitives. As a result, formally verifying the functionality programmed by a given bit-stream on TRAP is not innately possible. To address this limitation, we introduce a method for automatically determining the signal flow direction through bidirectional pass transistors for a given bit-stream and subsequently converting the HDL describing the programmed fabric to consist only of unidirectional transistors. Thereby, commercial EDA tools can be used to check logic equivalence between the transistor-level HDL describing the programmed fabric and the post-synthesis gate-level netlist.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10136928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss the challenges related with developing a post-programming verification solution for a TRAnsistor-level Programmable fabric (TRAP). Toward achieving high density, the TRAP architecture employs bidirectionally-operated pass transis-tors in the implementation of its logic and interconnect network. While it is possible to model such transistors through appropriate primitives of hardware description languages (HDL) to enable simulation-based validation, Logic Equivalence Checking (LEC) methods and tools do not support such primitives. As a result, formally verifying the functionality programmed by a given bit-stream on TRAP is not innately possible. To address this limitation, we introduce a method for automatically determining the signal flow direction through bidirectional pass transistors for a given bit-stream and subsequently converting the HDL describing the programmed fabric to consist only of unidirectional transistors. Thereby, commercial EDA tools can be used to check logic equivalence between the transistor-level HDL describing the programmed fabric and the post-synthesis gate-level netlist.