Traffic control using V-2-V Based Method using Reinforcement Learning

Moksh Grover, Bharti Verma, Nikhil Sharma, I. Kaushik
{"title":"Traffic control using V-2-V Based Method using Reinforcement Learning","authors":"Moksh Grover, Bharti Verma, Nikhil Sharma, I. Kaushik","doi":"10.1109/ICCCIS48478.2019.8974540","DOIUrl":null,"url":null,"abstract":"Nowadays with the increase in advancement of traffic network methodology we have potentials to control traffic congestion and hindrance using huge range of traffic management strategies. Feasibly there are two most promising techniques proffered are chaos theory and reinforcement leaning techniques, the goal of this research technique is to make up a model that self-sufficiently learns by itself the optimal policy. In this paper, we use V-2-V based fuzzy node mechanism and chaos theory that notifies where the traffic could get clustered. On other hand, our reinforcement learning agent makes up discretions (signal status) for the proffered environment.","PeriodicalId":436154,"journal":{"name":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS48478.2019.8974540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Nowadays with the increase in advancement of traffic network methodology we have potentials to control traffic congestion and hindrance using huge range of traffic management strategies. Feasibly there are two most promising techniques proffered are chaos theory and reinforcement leaning techniques, the goal of this research technique is to make up a model that self-sufficiently learns by itself the optimal policy. In this paper, we use V-2-V based fuzzy node mechanism and chaos theory that notifies where the traffic could get clustered. On other hand, our reinforcement learning agent makes up discretions (signal status) for the proffered environment.
基于强化学习的V-2-V方法的交通控制
如今,随着交通网络方法的不断进步,我们有可能利用各种交通管理策略来控制交通拥堵和障碍。目前最有前途的两种技术是混沌理论和强化学习技术,本研究技术的目标是构建一个能够自我充分学习最优策略的模型。在本文中,我们使用基于V-2-V的模糊节点机制和混沌理论来通知哪里的流量可以聚集。另一方面,我们的强化学习代理为所提供的环境弥补了自由裁量权(信号状态)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信