{"title":"PENGENALAN CITRA SASIRANGAN BERBASIS FITUR GLCM DAN MEDIAN FILTER MENGGUNAKAN LEARNING VECTOR QUANTITATION","authors":"Muharir Muharir","doi":"10.31602/TJI.V9I4.1541","DOIUrl":null,"url":null,"abstract":"Sasirangan adalah kain khas suku Banjar provinsi Kalimantan Selatan, kain sasirangan merupakan salah satu budaya yang dimiliki bangsa Indonesia yang harus dijaga dan dilestarikan. Sasirangan saat ini memiliki beragam motif dan sebagian motif-motif yang ada belum dikenal masyarakat. Pengenalan citra saat ini sudah banyak dilakukan namun akurasi yang dihasilkan masih rendah dan belum diketahui algoritma apa yang menghasilkan akurasi terbaik untuk mengenali citra sasirangan. Pada penelitian ini, teknik yang digunakan untuk ekstraksi fitur adalah metode Grey Level Co-occurrence Matriec. Untuk pengenalan pola digunakan metode Linear Vector Quantization dengan melakukan beberapa tahapan pengujian, menggunakan pengujian dengan training dan testing, dan menggunakan cross validation. Pengujian menggunakan training dan testing dilakukan dengan 4 ketentuan 60%:40%, 70%:30%, 80%:20%, 90%:10%, untuk sampling type yang terbagi menjadi 3 bagian : yaitu Linear Sampling, Shuffled Sampling, dan Stratified Sampling menggunakan teknik Fold Cross Validation dengan masing-masing di uji dari 2, 3, 4, 5, 6, 7, 8, 9, dan 10 . Dari hasil penelitian menunjukkan bahwa pada pengujian tersebut akurasi tertinggi untuk mengenali citra sasirangan menggunakan sampling type dengan teknik Shuffled Sampling di dapatkan (93,33%) dengan nilai validasi 5, dengan perbandingan data training 70% dan testing 30% .Keyword : Median Filter, Grey Level Co-occurrence Matriec, Learning Vector Quantization","PeriodicalId":120986,"journal":{"name":"Technologia: Jurnal Ilmiah","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologia: Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31602/TJI.V9I4.1541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Sasirangan adalah kain khas suku Banjar provinsi Kalimantan Selatan, kain sasirangan merupakan salah satu budaya yang dimiliki bangsa Indonesia yang harus dijaga dan dilestarikan. Sasirangan saat ini memiliki beragam motif dan sebagian motif-motif yang ada belum dikenal masyarakat. Pengenalan citra saat ini sudah banyak dilakukan namun akurasi yang dihasilkan masih rendah dan belum diketahui algoritma apa yang menghasilkan akurasi terbaik untuk mengenali citra sasirangan. Pada penelitian ini, teknik yang digunakan untuk ekstraksi fitur adalah metode Grey Level Co-occurrence Matriec. Untuk pengenalan pola digunakan metode Linear Vector Quantization dengan melakukan beberapa tahapan pengujian, menggunakan pengujian dengan training dan testing, dan menggunakan cross validation. Pengujian menggunakan training dan testing dilakukan dengan 4 ketentuan 60%:40%, 70%:30%, 80%:20%, 90%:10%, untuk sampling type yang terbagi menjadi 3 bagian : yaitu Linear Sampling, Shuffled Sampling, dan Stratified Sampling menggunakan teknik Fold Cross Validation dengan masing-masing di uji dari 2, 3, 4, 5, 6, 7, 8, 9, dan 10 . Dari hasil penelitian menunjukkan bahwa pada pengujian tersebut akurasi tertinggi untuk mengenali citra sasirangan menggunakan sampling type dengan teknik Shuffled Sampling di dapatkan (93,33%) dengan nilai validasi 5, dengan perbandingan data training 70% dan testing 30% .Keyword : Median Filter, Grey Level Co-occurrence Matriec, Learning Vector Quantization