A Modified UNet based Framework towards Early Detection of Autism using EEG Waves

N. Nagashree, M. Chitralekha, S. M. Harsha, S. M. Sai Usha Sree, M. Chinmayee, S. H. Basavaraj
{"title":"A Modified UNet based Framework towards Early Detection of Autism using EEG Waves","authors":"N. Nagashree, M. Chitralekha, S. M. Harsha, S. M. Sai Usha Sree, M. Chinmayee, S. H. Basavaraj","doi":"10.1109/INOCON57975.2023.10101224","DOIUrl":null,"url":null,"abstract":"Autism is a spectrum disorder with a multitude of brain abnormalities if not detected at the earlier stages, it leads to major complications. It’s a kind of neurological disorder. Many methods are available in the literature to detect autism such as imaging modalities like MRI, PET, CT, and EEG. EEG is a measure to record brain signals and autism is detected in it by analyzing the EEG wave spectrogram. The proposed methodology incorporates Deep Learning based method to detect autism through an EEG image spectrogram. It has given about 98% of accuracy as compared to other classical approaches.","PeriodicalId":113637,"journal":{"name":"2023 2nd International Conference for Innovation in Technology (INOCON)","volume":"65 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference for Innovation in Technology (INOCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INOCON57975.2023.10101224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autism is a spectrum disorder with a multitude of brain abnormalities if not detected at the earlier stages, it leads to major complications. It’s a kind of neurological disorder. Many methods are available in the literature to detect autism such as imaging modalities like MRI, PET, CT, and EEG. EEG is a measure to record brain signals and autism is detected in it by analyzing the EEG wave spectrogram. The proposed methodology incorporates Deep Learning based method to detect autism through an EEG image spectrogram. It has given about 98% of accuracy as compared to other classical approaches.
基于改进UNet的自闭症脑电波早期检测框架
自闭症是一种具有多种大脑异常的谱系障碍,如果在早期阶段没有发现,就会导致严重的并发症。这是一种神经紊乱。文献中有许多检测自闭症的方法,如MRI、PET、CT和EEG等成像方式。脑电图是一种记录大脑信号的手段,通过分析脑电图波谱图来检测自闭症。该方法结合了基于深度学习的方法,通过脑电图图像谱图检测自闭症。与其他经典方法相比,它的准确率约为98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信