The Cognitive and Mathematical Foundations of Analytic Epidemiology

Yingxu Wang, K. Plataniotis, Jane Z. Wang, Ming Hou, Mengchu Zhou, N. Howard, Jun Peng, Runhe Huang, Shushma Patel, Du Zhang
{"title":"The Cognitive and Mathematical Foundations of Analytic Epidemiology","authors":"Yingxu Wang, K. Plataniotis, Jane Z. Wang, Ming Hou, Mengchu Zhou, N. Howard, Jun Peng, Runhe Huang, Shushma Patel, Du Zhang","doi":"10.1109/ICCICC50026.2020.9450250","DOIUrl":null,"url":null,"abstract":"Analytic epidemiology is a transdisciplinary study on the cognitive, theoretical, and mathematical models of COVID-19 and other contagious diseases. It is recognized that analytic epidemiology may be better studied by big data explorations at the macro level rather than merely biological analyses at the micro level in order to not lose the forest for the trees. This paper presents a basic research on analytic epidemiology underpinned by sciences of cognition, computer, big data, information, AI, mathematics, epidemiology, and systems. It introduces a novel Causal Probability Theory (CPT) for explaining the Dynamic Pandemic Transmission Model (DPTM) of analytic epidemiology. It reveals how the fundamental reproductive rate $(R_{0})$ may be rigorously calibrated based on big data of COVID-19. A theoretical framework of analytic epidemiology is developed to elaborating the insights of pandemic mechanisms in general and COVID-19 in particular. Robust and accurate predictions on key attributes of COVID-19, including $R_{0}(t)$, forecasted infectives/resources, and the expected date of pandemic termination, are derived via rigorous experiments on worldwide big data of epidemiology.","PeriodicalId":212248,"journal":{"name":"2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC50026.2020.9450250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Analytic epidemiology is a transdisciplinary study on the cognitive, theoretical, and mathematical models of COVID-19 and other contagious diseases. It is recognized that analytic epidemiology may be better studied by big data explorations at the macro level rather than merely biological analyses at the micro level in order to not lose the forest for the trees. This paper presents a basic research on analytic epidemiology underpinned by sciences of cognition, computer, big data, information, AI, mathematics, epidemiology, and systems. It introduces a novel Causal Probability Theory (CPT) for explaining the Dynamic Pandemic Transmission Model (DPTM) of analytic epidemiology. It reveals how the fundamental reproductive rate $(R_{0})$ may be rigorously calibrated based on big data of COVID-19. A theoretical framework of analytic epidemiology is developed to elaborating the insights of pandemic mechanisms in general and COVID-19 in particular. Robust and accurate predictions on key attributes of COVID-19, including $R_{0}(t)$, forecasted infectives/resources, and the expected date of pandemic termination, are derived via rigorous experiments on worldwide big data of epidemiology.
分析流行病学的认知和数学基础
分析流行病学是对COVID-19和其他传染病的认知、理论和数学模型的跨学科研究。人们认识到,分析流行病学可以通过宏观层面的大数据探索来更好地研究,而不仅仅是微观层面的生物学分析,以避免只见树木不见森林。本文提出了以认知科学、计算机科学、大数据科学、信息科学、人工智能科学、数学科学、流行病学科学和系统科学为基础的分析流行病学基础研究。介绍了一种新的因果概率理论(CPT)来解释分析流行病学的动态大流行传播模型(DPTM)。它揭示了如何根据新冠肺炎大数据严格校准基本生殖率$(R_{0})$。建立了分析流行病学的理论框架,以阐述大流行机制的一般见解,特别是COVID-19。通过对全球流行病学大数据的严格实验,得出了包括R_{0}(t)$、预测感染/资源、预计大流行结束日期在内的COVID-19关键属性的稳健准确预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信