Modeling characteristics of agglutinative languages with Multi-class language model for ASR system

I. Dawa, Y. Sagisaka, S. Nakamura
{"title":"Modeling characteristics of agglutinative languages with Multi-class language model for ASR system","authors":"I. Dawa, Y. Sagisaka, S. Nakamura","doi":"10.1109/ICSDA.2009.5278368","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss a new language model that considers the characteristics of the agglutinative languages. We used Mongolian (a Cyrillic language system used in Mongolia) as an example from which to build the language model. We developed a Multi-class N-gram language model based on similar word clustering that focuses on the variable suffixes of a word in Mongolian. By applying our proposed language model, the resulting recognition system can improve performance by 6.85% compared with a conventional word N-gram when applying the ATRASR engine. We also confirmed that our new model will be convenient for rapid development of an ASR system for resource-deficient languages, especially for agglutinative languages such as Mongolian.","PeriodicalId":254906,"journal":{"name":"2009 Oriental COCOSDA International Conference on Speech Database and Assessments","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Oriental COCOSDA International Conference on Speech Database and Assessments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSDA.2009.5278368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we discuss a new language model that considers the characteristics of the agglutinative languages. We used Mongolian (a Cyrillic language system used in Mongolia) as an example from which to build the language model. We developed a Multi-class N-gram language model based on similar word clustering that focuses on the variable suffixes of a word in Mongolian. By applying our proposed language model, the resulting recognition system can improve performance by 6.85% compared with a conventional word N-gram when applying the ATRASR engine. We also confirmed that our new model will be convenient for rapid development of an ASR system for resource-deficient languages, especially for agglutinative languages such as Mongolian.
基于多类语言模型的ASR系统黏着语言建模特征
在本文中,我们讨论了一种新的语言模型,该模型考虑了黏着语言的特点。我们以蒙古语(蒙古国使用的一种西里尔语言系统)为例来构建语言模型。本文基于相似词聚类,建立了一个多类N-gram语言模型,重点研究蒙古语词缀的变化。通过应用我们提出的语言模型,与使用ATRASR引擎的传统词n图识别系统相比,识别系统的性能提高了6.85%。我们还证实了我们的新模型将有利于资源缺乏语言的ASR系统的快速开发,特别是对于像蒙古语这样的黏着语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信