Feature extraction using random matrix theory approach

V. Rojkova, M. Kantardzic
{"title":"Feature extraction using random matrix theory approach","authors":"V. Rojkova, M. Kantardzic","doi":"10.1109/ICMLA.2007.95","DOIUrl":null,"url":null,"abstract":"Feature extraction involves simplifying the amount of resources required to describe a large set of data accurately. In this paper, we propose to broaden the feature extraction algorithms with Random Matrix Theory methodology. Testing the cross-correlation matrix of variables against the null hypothesis of random correlations, we can derive characteristic parameters of the system, such as boundaries of eigenvalue spectra of random correlations, distribution of eigenvalues and eigenvectors of random correlations, inverse participation ratio and stability of eigenvectors of non-random correlations. We demonstrate the usefullness of these parameters for network traffic application, in particular, for network congestion control and for detection of any changes in the stable traffic dynamics.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Feature extraction involves simplifying the amount of resources required to describe a large set of data accurately. In this paper, we propose to broaden the feature extraction algorithms with Random Matrix Theory methodology. Testing the cross-correlation matrix of variables against the null hypothesis of random correlations, we can derive characteristic parameters of the system, such as boundaries of eigenvalue spectra of random correlations, distribution of eigenvalues and eigenvectors of random correlations, inverse participation ratio and stability of eigenvectors of non-random correlations. We demonstrate the usefullness of these parameters for network traffic application, in particular, for network congestion control and for detection of any changes in the stable traffic dynamics.
特征提取采用随机矩阵理论方法
特征提取涉及简化准确描述大量数据所需的资源量。在本文中,我们提出用随机矩阵理论的方法来扩展特征提取算法。根据随机相关的零假设检验变量的互相关矩阵,可以得到系统的特征参数,如随机相关特征值谱的边界、随机相关特征值和特征向量的分布、逆参与比和非随机相关特征向量的稳定性。我们展示了这些参数对网络流量应用的有用性,特别是对于网络拥塞控制和检测稳定流量动态中的任何变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信