Impact of Somatic Cell Count on Milk Yield, Milk Composition, and Growth Performance in Zaraibi Goats During Different Physiological Stages of Lactation Period
Ahmed Abdelrazek Gabr, Mohamed Ahmed Ibrahim Ahmed, Rasha Abdalla Hawas
{"title":"Impact of Somatic Cell Count on Milk Yield, Milk Composition, and Growth Performance in Zaraibi Goats During Different Physiological Stages of Lactation Period","authors":"Ahmed Abdelrazek Gabr, Mohamed Ahmed Ibrahim Ahmed, Rasha Abdalla Hawas","doi":"10.11648/j.aap.20230802.11","DOIUrl":null,"url":null,"abstract":": The study investigated the effect of different somatic cell count (SCC) classes on milk production traits and growth of Zaraibi does and kids at three distinct physiological stages during lactation. A total of 150 milk samples obtained from 50 goats at milk peak, kids weaning, and meeting periods (days of 50, 100 and 150) were analyzed. The goats were selected based on strict criteria, including the same age, kidding date, low milk SCC, and no udder problems. The goats were divided into three classes based on overall milk SCC values: SCG1 (≤315x10 3 cells/mL), SCG2 (316-335x10 3 cells/mL), and SCG3 (>335 x10 3 cells/mL). The results showed that although there were significant differences between SCC1 and SCC2 classes in SCC and log SCC at different stages of lactation, there were no significant differences in milk production and composition. The daily milk yield decreased significantly with increased SCC level (> 335x10 3 cells/mL), and the highest milk losses were observed. The milk composition followed the same pattern of significant differences among SCC classes during different lactation stages, with the highest values observed in the highest SCC class (> 335x10 3 cells/mL). The daily milk yield decreased gradually with increasing lactation stage, while SCC values increased gradually. The does’ body weight did not change significantly by lactation stage. Overall, the findings suggest that SCC level of > 335x10 3 cells/mL has a significant effect on milk production and composition, but not on growth traits of Zaraibi does’ and kids during different stages of lactation. These findings could be useful for dairy farmers to manage their herds and optimize milk production to produce high-quality dairy products.","PeriodicalId":211651,"journal":{"name":"Advances in Applied Physiology","volume":"2 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.aap.20230802.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: The study investigated the effect of different somatic cell count (SCC) classes on milk production traits and growth of Zaraibi does and kids at three distinct physiological stages during lactation. A total of 150 milk samples obtained from 50 goats at milk peak, kids weaning, and meeting periods (days of 50, 100 and 150) were analyzed. The goats were selected based on strict criteria, including the same age, kidding date, low milk SCC, and no udder problems. The goats were divided into three classes based on overall milk SCC values: SCG1 (≤315x10 3 cells/mL), SCG2 (316-335x10 3 cells/mL), and SCG3 (>335 x10 3 cells/mL). The results showed that although there were significant differences between SCC1 and SCC2 classes in SCC and log SCC at different stages of lactation, there were no significant differences in milk production and composition. The daily milk yield decreased significantly with increased SCC level (> 335x10 3 cells/mL), and the highest milk losses were observed. The milk composition followed the same pattern of significant differences among SCC classes during different lactation stages, with the highest values observed in the highest SCC class (> 335x10 3 cells/mL). The daily milk yield decreased gradually with increasing lactation stage, while SCC values increased gradually. The does’ body weight did not change significantly by lactation stage. Overall, the findings suggest that SCC level of > 335x10 3 cells/mL has a significant effect on milk production and composition, but not on growth traits of Zaraibi does’ and kids during different stages of lactation. These findings could be useful for dairy farmers to manage their herds and optimize milk production to produce high-quality dairy products.