K. Brezinski, Michael Guevarra, K. Ferens
{"title":"Population Based Equilibrium in Hybrid SA/PSO for Combinatorial Optimization: Hybrid SA/PSO for Combinatorial Optimization","authors":"K. Brezinski, Michael Guevarra, K. Ferens","doi":"10.4018/ijssci.2020040105","DOIUrl":null,"url":null,"abstract":"Thisarticleintroducesahybridalgorithmcombiningsimulatedannealing(SA)andparticleswarm optimization (PSO) to improve the convergence time of a series of combinatorial optimization problems.TheimplementationcarriedoutadynamicdeterminationoftheequilibriumloopsinSA throughasimple,yeteffectivedeterminationbasedontherecentperformanceoftheswarmmembers. Inparticular,theauthorsdemonstratedthatstrongimprovementsinconvergencetimefollowedfrom amarginaldecreaseinglobalsearchefficiencycomparedtothatofSAalone,forseveralbenchmark instancesofthetravelingsalespersonproblem(TSP).Followingtestingon4additionalcitylistTSP problems,a30%decreaseinconvergencetimewasachieved.Allinall,thehybridimplementation minimizedtherelianceonparametertuningofSA,leadingtosignificantimprovementstoconvergence timecomparedtothoseobtainedwithSAaloneforthe15benchmarkproblemstested. KEywORdS Cognition, Combinatorial Optimization, Global Optimization, Metaheuristics, Particle Swarm Optimization, Simulated Annealing, Swarm Intelligence, Traveling Salesperson Problem","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijssci.2020040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
基于种群平衡的混合粒子群算法组合优化研究
Thisarticleintroducesahybridalgorithmcombiningsimulatedannealing(SA)andparticleswarm optimation_ (PSO) _改进_一系列_组合优化问题的_收敛_时间_。TheimplementationcarriedoutadynamicdeterminationoftheequilibriumloopsinSA throughasimple,yeteffectivedeterminationbasedontherecentperformanceoftheswarmmembers。> Inparticular,theauthorsdemonstratedthatstrongimprovementsinconvergencetimefollowedfrom amarginaldecreaseinglobalsearchefficiencycomparedtothatofSAalone,forseveralbenchmark instancesofthetravelingsalespersonproblem(TSP)。Followingtestingon4additionalcitylistTSP问题,a30%decreaseinconvergencetimewasachieved。Allinall,thehybridimplementation minimizedtherelianceonparametertuningofSA,leadingtosignificantimprovementstoconvergence timecomparedtothoseobtainedwithSAaloneforthe15benchmarkproblemstested。关键词认知,组合优化,全局优化,元启发式,粒子群优化,模拟退火,群体智能,旅行销售员问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。