Automatic part localization using 3D cuboid box for vehicle subcategory recognition

Younkwan Lee, Jongmin Yu, M. Jeon
{"title":"Automatic part localization using 3D cuboid box for vehicle subcategory recognition","authors":"Younkwan Lee, Jongmin Yu, M. Jeon","doi":"10.1109/ICCAIS.2017.8217571","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient vehicle model recognition method which utilize 3D cuboid box for detection and Convolutional Neural Networks (CNN)-based classifier. Our method automatically localizes the unique part of the vehicle as features which enhance the classification performance. The proposed method is tested on the dataset called BoxCars which contain 63,750 images with 148 categories and the test results show 93.49%.","PeriodicalId":410094,"journal":{"name":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2017.8217571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an efficient vehicle model recognition method which utilize 3D cuboid box for detection and Convolutional Neural Networks (CNN)-based classifier. Our method automatically localizes the unique part of the vehicle as features which enhance the classification performance. The proposed method is tested on the dataset called BoxCars which contain 63,750 images with 148 categories and the test results show 93.49%.
基于三维长方体的车辆子类识别零件自动定位
本文提出了一种基于卷积神经网络(Convolutional Neural Networks, CNN)分类器和三维长方体盒检测的高效车辆模型识别方法。该方法将车辆的独特部分自动定位为特征,提高了分类性能。在BoxCars数据集上对该方法进行了测试,该数据集包含63750张图像,包含148个分类,测试结果为93.49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信