Multi-Fidelity Reduced-Order Models for Multiscale Damage Analyses With Automatic Calibration

Shiguang Deng, Carlos Mora, D. Apelian, R. Bostanabad
{"title":"Multi-Fidelity Reduced-Order Models for Multiscale Damage Analyses With Automatic Calibration","authors":"Shiguang Deng, Carlos Mora, D. Apelian, R. Bostanabad","doi":"10.1115/detc2022-90163","DOIUrl":null,"url":null,"abstract":"\n Predicting the fracture behavior of macroscale components containing microscopic porosity relies on multiscale damage models which typically ignore the manufacturing-induced spatial variabilities in porosity. This simplification is made due to the prohibitive computational costs associated with explicitly modeling spatially varying microstructures in a macroscopic component. To address this challenge, we propose a data-driven framework that integrates a mechanistic reduced-order model (ROM) with a calibration scheme based on latent map Gaussian processes (LMGPs). Our ROM drastically accelerates direct numerical simulations (DNS) by using a stabilized damage algorithm and systematically reducing the degrees of freedom via clustering. Since clustering affects local strain fields and hence the fracture response, we construct a multi-fidelity LMGP to inversely estimate the damage parameters of an ROM as a function of microstructure and clustering level such that the ROM faithfully surrogates DNS. We demonstrate the application of our framework in predicting the damage behavior of a multiscale metallic component with spatially varying porosity.","PeriodicalId":394503,"journal":{"name":"Volume 3B: 48th Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3B: 48th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2022-90163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the fracture behavior of macroscale components containing microscopic porosity relies on multiscale damage models which typically ignore the manufacturing-induced spatial variabilities in porosity. This simplification is made due to the prohibitive computational costs associated with explicitly modeling spatially varying microstructures in a macroscopic component. To address this challenge, we propose a data-driven framework that integrates a mechanistic reduced-order model (ROM) with a calibration scheme based on latent map Gaussian processes (LMGPs). Our ROM drastically accelerates direct numerical simulations (DNS) by using a stabilized damage algorithm and systematically reducing the degrees of freedom via clustering. Since clustering affects local strain fields and hence the fracture response, we construct a multi-fidelity LMGP to inversely estimate the damage parameters of an ROM as a function of microstructure and clustering level such that the ROM faithfully surrogates DNS. We demonstrate the application of our framework in predicting the damage behavior of a multiscale metallic component with spatially varying porosity.
具有自动校准的多尺度损伤分析的多保真度降阶模型
预测含有微观孔隙度的宏观构件的破裂行为依赖于多尺度损伤模型,这些模型通常忽略了制造引起的孔隙度空间变异。这种简化是由于在宏观组件中显式建模空间变化的微观结构相关的令人望而却步的计算成本。为了解决这一挑战,我们提出了一个数据驱动的框架,该框架将机制降阶模型(ROM)与基于潜在映射高斯过程(LMGPs)的校准方案集成在一起。我们的ROM通过使用稳定的损伤算法和通过聚类系统地降低自由度,极大地加速了直接数值模拟(DNS)。由于聚类会影响局部应变场,从而影响断裂响应,我们构建了一个多保真度LMGP,以微观结构和聚类水平为函数逆估计ROM的损伤参数,从而使ROM忠实地替代DNS。我们展示了我们的框架在预测具有空间变化孔隙率的多尺度金属构件的损伤行为中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信