Deepfake Video Detection by Using Convolutional Gated Recurrent Unit

Yifeng Tu, Yang Liu, Xueming Li
{"title":"Deepfake Video Detection by Using Convolutional Gated Recurrent Unit","authors":"Yifeng Tu, Yang Liu, Xueming Li","doi":"10.1145/3457682.3457736","DOIUrl":null,"url":null,"abstract":"Rapid development in deep learning is making it easier to create fake videos known as “deepfake” videos in which human faces are swapped. Since deepfake videos are difficult to recognize by human eyes, it becomes important to automatically detect these forgeries and prevent their abuse. In this paper, we propose a deep neural network model to detect deepfake videos using a convolutional neural network (CNN) to extract frame-level features. These features are then used to train a convolutional GRU that learns to distinguish between fake and real videos. Evaluation is performed on the recently released Celeb-DF(v2)datasets where a state-of-art AUC score was achieved.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Rapid development in deep learning is making it easier to create fake videos known as “deepfake” videos in which human faces are swapped. Since deepfake videos are difficult to recognize by human eyes, it becomes important to automatically detect these forgeries and prevent their abuse. In this paper, we propose a deep neural network model to detect deepfake videos using a convolutional neural network (CNN) to extract frame-level features. These features are then used to train a convolutional GRU that learns to distinguish between fake and real videos. Evaluation is performed on the recently released Celeb-DF(v2)datasets where a state-of-art AUC score was achieved.
基于卷积门控循环单元的深度假视频检测
深度学习的快速发展使得制作被称为“deepfake”的假视频变得更容易,在这些视频中,人们交换了人脸。由于深度伪造视频很难被人眼识别,因此自动检测这些伪造并防止其滥用变得非常重要。在本文中,我们提出了一种深度神经网络模型,使用卷积神经网络(CNN)提取帧级特征来检测深度假视频。然后,这些特征被用来训练一个卷积GRU,该GRU学会区分假视频和真视频。对最近发布的Celeb-DF(v2)数据集进行评估,获得了最先进的AUC评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信